| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1onn | 
							⊢ 1o  ∈  ω  | 
						
						
							| 2 | 
							
								1
							 | 
							a1i | 
							⊢ ( ¬  𝐴  ∈  Fin  →  1o  ∈  ω )  | 
						
						
							| 3 | 
							
								
							 | 
							djudoml | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  1o  ∈  ω )  →  𝐴  ≼  ( 𝐴  ⊔  1o ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							sylan2 | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  𝐴  ≼  ( 𝐴  ⊔  1o ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ¬  𝐴  ∈  Fin )  | 
						
						
							| 6 | 
							
								
							 | 
							nnfi | 
							⊢ ( 1o  ∈  ω  →  1o  ∈  Fin )  | 
						
						
							| 7 | 
							
								1 6
							 | 
							mp1i | 
							⊢ ( ¬  𝐴  ∈  Fin  →  1o  ∈  Fin )  | 
						
						
							| 8 | 
							
								
							 | 
							fidomtri2 | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  1o  ∈  Fin )  →  ( 𝐴  ≼  1o  ↔  ¬  1o  ≺  𝐴 ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sylan2 | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ≼  1o  ↔  ¬  1o  ≺  𝐴 ) )  | 
						
						
							| 10 | 
							
								1 6
							 | 
							mp1i | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  1o  ∈  Fin )  | 
						
						
							| 11 | 
							
								
							 | 
							domfi | 
							⊢ ( ( 1o  ∈  Fin  ∧  𝐴  ≼  1o )  →  𝐴  ∈  Fin )  | 
						
						
							| 12 | 
							
								11
							 | 
							ex | 
							⊢ ( 1o  ∈  Fin  →  ( 𝐴  ≼  1o  →  𝐴  ∈  Fin ) )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ≼  1o  →  𝐴  ∈  Fin ) )  | 
						
						
							| 14 | 
							
								9 13
							 | 
							sylbird | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( ¬  1o  ≺  𝐴  →  𝐴  ∈  Fin ) )  | 
						
						
							| 15 | 
							
								5 14
							 | 
							mt3d | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  1o  ≺  𝐴 )  | 
						
						
							| 16 | 
							
								
							 | 
							canthp1 | 
							⊢ ( 1o  ≺  𝐴  →  ( 𝐴  ⊔  1o )  ≺  𝒫  𝐴 )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ⊔  1o )  ≺  𝒫  𝐴 )  | 
						
						
							| 18 | 
							
								4 17
							 | 
							jca | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ≼  ( 𝐴  ⊔  1o )  ∧  ( 𝐴  ⊔  1o )  ≺  𝒫  𝐴 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							gchen1 | 
							⊢ ( ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  ∧  ( 𝐴  ≼  ( 𝐴  ⊔  1o )  ∧  ( 𝐴  ⊔  1o )  ≺  𝒫  𝐴 ) )  →  𝐴  ≈  ( 𝐴  ⊔  1o ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							mpdan | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  𝐴  ≈  ( 𝐴  ⊔  1o ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							ensymd | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ⊔  1o )  ≈  𝐴 )  |