Metamath Proof Explorer


Theorem gchdju1

Description: An infinite GCH-set is idempotent under cardinal successor. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion gchdju1 AGCH¬AFinA⊔︀1𝑜A

Proof

Step Hyp Ref Expression
1 1onn 1𝑜ω
2 1 a1i ¬AFin1𝑜ω
3 djudoml AGCH1𝑜ωAA⊔︀1𝑜
4 2 3 sylan2 AGCH¬AFinAA⊔︀1𝑜
5 simpr AGCH¬AFin¬AFin
6 nnfi 1𝑜ω1𝑜Fin
7 1 6 mp1i ¬AFin1𝑜Fin
8 fidomtri2 AGCH1𝑜FinA1𝑜¬1𝑜A
9 7 8 sylan2 AGCH¬AFinA1𝑜¬1𝑜A
10 1 6 mp1i AGCH¬AFin1𝑜Fin
11 domfi 1𝑜FinA1𝑜AFin
12 11 ex 1𝑜FinA1𝑜AFin
13 10 12 syl AGCH¬AFinA1𝑜AFin
14 9 13 sylbird AGCH¬AFin¬1𝑜AAFin
15 5 14 mt3d AGCH¬AFin1𝑜A
16 canthp1 1𝑜AA⊔︀1𝑜𝒫A
17 15 16 syl AGCH¬AFinA⊔︀1𝑜𝒫A
18 4 17 jca AGCH¬AFinAA⊔︀1𝑜A⊔︀1𝑜𝒫A
19 gchen1 AGCH¬AFinAA⊔︀1𝑜A⊔︀1𝑜𝒫AAA⊔︀1𝑜
20 18 19 mpdan AGCH¬AFinAA⊔︀1𝑜
21 20 ensymd AGCH¬AFinA⊔︀1𝑜A