Metamath Proof Explorer


Theorem gchen1

Description: If A <_ B < ~P A , and A is an infinite GCH-set, then A = B in cardinality. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion gchen1 AGCH¬AFinABB𝒫AAB

Proof

Step Hyp Ref Expression
1 simprl AGCH¬AFinABB𝒫AAB
2 gchi AGCHABB𝒫AAFin
3 2 3com23 AGCHB𝒫AABAFin
4 3 3expia AGCHB𝒫AABAFin
5 4 con3dimp AGCHB𝒫A¬AFin¬AB
6 5 an32s AGCH¬AFinB𝒫A¬AB
7 6 adantrl AGCH¬AFinABB𝒫A¬AB
8 bren2 ABAB¬AB
9 1 7 8 sylanbrc AGCH¬AFinABB𝒫AAB