| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1onn |
|- 1o e. _om |
| 2 |
1
|
a1i |
|- ( -. A e. Fin -> 1o e. _om ) |
| 3 |
|
djudoml |
|- ( ( A e. GCH /\ 1o e. _om ) -> A ~<_ ( A |_| 1o ) ) |
| 4 |
2 3
|
sylan2 |
|- ( ( A e. GCH /\ -. A e. Fin ) -> A ~<_ ( A |_| 1o ) ) |
| 5 |
|
simpr |
|- ( ( A e. GCH /\ -. A e. Fin ) -> -. A e. Fin ) |
| 6 |
|
nnfi |
|- ( 1o e. _om -> 1o e. Fin ) |
| 7 |
1 6
|
mp1i |
|- ( -. A e. Fin -> 1o e. Fin ) |
| 8 |
|
fidomtri2 |
|- ( ( A e. GCH /\ 1o e. Fin ) -> ( A ~<_ 1o <-> -. 1o ~< A ) ) |
| 9 |
7 8
|
sylan2 |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( A ~<_ 1o <-> -. 1o ~< A ) ) |
| 10 |
1 6
|
mp1i |
|- ( ( A e. GCH /\ -. A e. Fin ) -> 1o e. Fin ) |
| 11 |
|
domfi |
|- ( ( 1o e. Fin /\ A ~<_ 1o ) -> A e. Fin ) |
| 12 |
11
|
ex |
|- ( 1o e. Fin -> ( A ~<_ 1o -> A e. Fin ) ) |
| 13 |
10 12
|
syl |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( A ~<_ 1o -> A e. Fin ) ) |
| 14 |
9 13
|
sylbird |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( -. 1o ~< A -> A e. Fin ) ) |
| 15 |
5 14
|
mt3d |
|- ( ( A e. GCH /\ -. A e. Fin ) -> 1o ~< A ) |
| 16 |
|
canthp1 |
|- ( 1o ~< A -> ( A |_| 1o ) ~< ~P A ) |
| 17 |
15 16
|
syl |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| 1o ) ~< ~P A ) |
| 18 |
4 17
|
jca |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( A ~<_ ( A |_| 1o ) /\ ( A |_| 1o ) ~< ~P A ) ) |
| 19 |
|
gchen1 |
|- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ ( A |_| 1o ) /\ ( A |_| 1o ) ~< ~P A ) ) -> A ~~ ( A |_| 1o ) ) |
| 20 |
18 19
|
mpdan |
|- ( ( A e. GCH /\ -. A e. Fin ) -> A ~~ ( A |_| 1o ) ) |
| 21 |
20
|
ensymd |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| 1o ) ~~ A ) |