Metamath Proof Explorer


Theorem djudoml

Description: A set is dominated by its disjoint union with another. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion djudoml AVBWAA⊔︀B

Proof

Step Hyp Ref Expression
1 unexg AVBWABV
2 ssun1 AAB
3 ssdomg ABVAABAAB
4 1 2 3 mpisyl AVBWAAB
5 undjudom AVBWABA⊔︀B
6 domtr AABABA⊔︀BAA⊔︀B
7 4 5 6 syl2anc AVBWAA⊔︀B