Metamath Proof Explorer


Theorem canthp1

Description: A slightly stronger form of Cantor's theorem: For 1 < n , n + 1 < 2 ^ n . Corollary 1.6 of KanamoriPincus p. 417. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion canthp1 1𝑜AA⊔︀1𝑜𝒫A

Proof

Step Hyp Ref Expression
1 1sdom2 1𝑜2𝑜
2 sdomdom 1𝑜2𝑜1𝑜2𝑜
3 1 2 ax-mp 1𝑜2𝑜
4 relsdom Rel
5 4 brrelex2i 1𝑜AAV
6 djudom2 1𝑜2𝑜AVA⊔︀1𝑜A⊔︀2𝑜
7 3 5 6 sylancr 1𝑜AA⊔︀1𝑜A⊔︀2𝑜
8 canthp1lem1 1𝑜AA⊔︀2𝑜𝒫A
9 domtr A⊔︀1𝑜A⊔︀2𝑜A⊔︀2𝑜𝒫AA⊔︀1𝑜𝒫A
10 7 8 9 syl2anc 1𝑜AA⊔︀1𝑜𝒫A
11 fal ¬
12 ensym A⊔︀1𝑜𝒫A𝒫AA⊔︀1𝑜
13 bren 𝒫AA⊔︀1𝑜ff:𝒫A1-1 ontoA⊔︀1𝑜
14 12 13 sylib A⊔︀1𝑜𝒫Aff:𝒫A1-1 ontoA⊔︀1𝑜
15 f1of f:𝒫A1-1 ontoA⊔︀1𝑜f:𝒫AA⊔︀1𝑜
16 pwidg AVA𝒫A
17 5 16 syl 1𝑜AA𝒫A
18 ffvelcdm f:𝒫AA⊔︀1𝑜A𝒫AfAA⊔︀1𝑜
19 15 17 18 syl2anr 1𝑜Af:𝒫A1-1 ontoA⊔︀1𝑜fAA⊔︀1𝑜
20 dju1dif AVfAA⊔︀1𝑜A⊔︀1𝑜fAA
21 5 19 20 syl2an2r 1𝑜Af:𝒫A1-1 ontoA⊔︀1𝑜A⊔︀1𝑜fAA
22 bren A⊔︀1𝑜fAAgg:A⊔︀1𝑜fA1-1 ontoA
23 21 22 sylib 1𝑜Af:𝒫A1-1 ontoA⊔︀1𝑜gg:A⊔︀1𝑜fA1-1 ontoA
24 simpll 1𝑜Af:𝒫A1-1 ontoA⊔︀1𝑜g:A⊔︀1𝑜fA1-1 ontoA1𝑜A
25 simplr 1𝑜Af:𝒫A1-1 ontoA⊔︀1𝑜g:A⊔︀1𝑜fA1-1 ontoAf:𝒫A1-1 ontoA⊔︀1𝑜
26 simpr 1𝑜Af:𝒫A1-1 ontoA⊔︀1𝑜g:A⊔︀1𝑜fA1-1 ontoAg:A⊔︀1𝑜fA1-1 ontoA
27 eqeq1 w=xw=Ax=A
28 id w=xw=x
29 27 28 ifbieq2d w=xifw=Aw=ifx=Ax
30 29 cbvmptv w𝒫Aifw=Aw=x𝒫Aifx=Ax
31 30 coeq2i gfw𝒫Aifw=Aw=gfx𝒫Aifx=Ax
32 eqid as|aAsa×asWeazagfw𝒫Aifw=Aws-1z=z=as|aAsa×asWeazagfw𝒫Aifw=Aws-1z=z
33 32 fpwwecbv as|aAsa×asWeazagfw𝒫Aifw=Aws-1z=z=xr|xArx×xrWexyxgfw𝒫Aifw=Awr-1y=y
34 eqid domas|aAsa×asWeazagfw𝒫Aifw=Aws-1z=z=domas|aAsa×asWeazagfw𝒫Aifw=Aws-1z=z
35 24 25 26 31 33 34 canthp1lem2 ¬1𝑜Af:𝒫A1-1 ontoA⊔︀1𝑜g:A⊔︀1𝑜fA1-1 ontoA
36 35 pm2.21i 1𝑜Af:𝒫A1-1 ontoA⊔︀1𝑜g:A⊔︀1𝑜fA1-1 ontoA
37 23 36 exlimddv 1𝑜Af:𝒫A1-1 ontoA⊔︀1𝑜
38 37 ex 1𝑜Af:𝒫A1-1 ontoA⊔︀1𝑜
39 38 exlimdv 1𝑜Aff:𝒫A1-1 ontoA⊔︀1𝑜
40 14 39 syl5 1𝑜AA⊔︀1𝑜𝒫A
41 11 40 mtoi 1𝑜A¬A⊔︀1𝑜𝒫A
42 brsdom A⊔︀1𝑜𝒫AA⊔︀1𝑜𝒫A¬A⊔︀1𝑜𝒫A
43 10 41 42 sylanbrc 1𝑜AA⊔︀1𝑜𝒫A