Description: A slightly stronger form of Cantor's theorem: For 1 < n , n + 1 < 2 ^ n . Corollary 1.6 of KanamoriPincus p. 417. (Contributed by Mario Carneiro, 18-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | canthp1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1sdom2 | |
|
2 | sdomdom | |
|
3 | 1 2 | ax-mp | |
4 | relsdom | |
|
5 | 4 | brrelex2i | |
6 | djudom2 | |
|
7 | 3 5 6 | sylancr | |
8 | canthp1lem1 | |
|
9 | domtr | |
|
10 | 7 8 9 | syl2anc | |
11 | fal | |
|
12 | ensym | |
|
13 | bren | |
|
14 | 12 13 | sylib | |
15 | f1of | |
|
16 | pwidg | |
|
17 | 5 16 | syl | |
18 | ffvelcdm | |
|
19 | 15 17 18 | syl2anr | |
20 | dju1dif | |
|
21 | 5 19 20 | syl2an2r | |
22 | bren | |
|
23 | 21 22 | sylib | |
24 | simpll | |
|
25 | simplr | |
|
26 | simpr | |
|
27 | eqeq1 | |
|
28 | id | |
|
29 | 27 28 | ifbieq2d | |
30 | 29 | cbvmptv | |
31 | 30 | coeq2i | |
32 | eqid | |
|
33 | 32 | fpwwecbv | |
34 | eqid | |
|
35 | 24 25 26 31 33 34 | canthp1lem2 | |
36 | 35 | pm2.21i | |
37 | 23 36 | exlimddv | |
38 | 37 | ex | |
39 | 38 | exlimdv | |
40 | 14 39 | syl5 | |
41 | 11 40 | mtoi | |
42 | brsdom | |
|
43 | 10 41 42 | sylanbrc | |