Metamath Proof Explorer


Theorem canthp1lem1

Description: Lemma for canthp1 . (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion canthp1lem1 1 𝑜 A A ⊔︀ 2 𝑜 𝒫 A

Proof

Step Hyp Ref Expression
1 1sdom2 1 𝑜 2 𝑜
2 djuxpdom 1 𝑜 A 1 𝑜 2 𝑜 A ⊔︀ 2 𝑜 A × 2 𝑜
3 1 2 mpan2 1 𝑜 A A ⊔︀ 2 𝑜 A × 2 𝑜
4 sdom0 ¬ 1 𝑜
5 breq2 A = 1 𝑜 A 1 𝑜
6 4 5 mtbiri A = ¬ 1 𝑜 A
7 6 con2i 1 𝑜 A ¬ A =
8 neq0 ¬ A = x x A
9 7 8 sylib 1 𝑜 A x x A
10 relsdom Rel
11 10 brrelex2i 1 𝑜 A A V
12 11 adantr 1 𝑜 A x A A V
13 enrefg A V A A
14 12 13 syl 1 𝑜 A x A A A
15 df2o2 2 𝑜 =
16 pwpw0 𝒫 =
17 15 16 eqtr4i 2 𝑜 = 𝒫
18 0ex V
19 vex x V
20 en2sn V x V x
21 18 19 20 mp2an x
22 pwen x 𝒫 𝒫 x
23 21 22 ax-mp 𝒫 𝒫 x
24 17 23 eqbrtri 2 𝑜 𝒫 x
25 xpen A A 2 𝑜 𝒫 x A × 2 𝑜 A × 𝒫 x
26 14 24 25 sylancl 1 𝑜 A x A A × 2 𝑜 A × 𝒫 x
27 snex x V
28 27 pwex 𝒫 x V
29 uncom A x x = x A x
30 simpr 1 𝑜 A x A x A
31 30 snssd 1 𝑜 A x A x A
32 undif x A x A x = A
33 31 32 sylib 1 𝑜 A x A x A x = A
34 29 33 syl5eq 1 𝑜 A x A A x x = A
35 12 difexd 1 𝑜 A x A A x V
36 canth2g A x V A x 𝒫 A x
37 domunsn A x 𝒫 A x A x x 𝒫 A x
38 35 36 37 3syl 1 𝑜 A x A A x x 𝒫 A x
39 34 38 eqbrtrrd 1 𝑜 A x A A 𝒫 A x
40 xpdom1g 𝒫 x V A 𝒫 A x A × 𝒫 x 𝒫 A x × 𝒫 x
41 28 39 40 sylancr 1 𝑜 A x A A × 𝒫 x 𝒫 A x × 𝒫 x
42 endomtr A × 2 𝑜 A × 𝒫 x A × 𝒫 x 𝒫 A x × 𝒫 x A × 2 𝑜 𝒫 A x × 𝒫 x
43 26 41 42 syl2anc 1 𝑜 A x A A × 2 𝑜 𝒫 A x × 𝒫 x
44 pwdjuen A x V x V 𝒫 A x ⊔︀ x 𝒫 A x × 𝒫 x
45 35 27 44 sylancl 1 𝑜 A x A 𝒫 A x ⊔︀ x 𝒫 A x × 𝒫 x
46 45 ensymd 1 𝑜 A x A 𝒫 A x × 𝒫 x 𝒫 A x ⊔︀ x
47 domentr A × 2 𝑜 𝒫 A x × 𝒫 x 𝒫 A x × 𝒫 x 𝒫 A x ⊔︀ x A × 2 𝑜 𝒫 A x ⊔︀ x
48 43 46 47 syl2anc 1 𝑜 A x A A × 2 𝑜 𝒫 A x ⊔︀ x
49 27 a1i 1 𝑜 A x A x V
50 disjdifr A x x =
51 50 a1i 1 𝑜 A x A A x x =
52 endjudisj A x V x V A x x = A x ⊔︀ x A x x
53 35 49 51 52 syl3anc 1 𝑜 A x A A x ⊔︀ x A x x
54 53 34 breqtrd 1 𝑜 A x A A x ⊔︀ x A
55 pwen A x ⊔︀ x A 𝒫 A x ⊔︀ x 𝒫 A
56 54 55 syl 1 𝑜 A x A 𝒫 A x ⊔︀ x 𝒫 A
57 domentr A × 2 𝑜 𝒫 A x ⊔︀ x 𝒫 A x ⊔︀ x 𝒫 A A × 2 𝑜 𝒫 A
58 48 56 57 syl2anc 1 𝑜 A x A A × 2 𝑜 𝒫 A
59 9 58 exlimddv 1 𝑜 A A × 2 𝑜 𝒫 A
60 domtr A ⊔︀ 2 𝑜 A × 2 𝑜 A × 2 𝑜 𝒫 A A ⊔︀ 2 𝑜 𝒫 A
61 3 59 60 syl2anc 1 𝑜 A A ⊔︀ 2 𝑜 𝒫 A