Metamath Proof Explorer


Theorem canthp1lem1

Description: Lemma for canthp1 . (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion canthp1lem1
|- ( 1o ~< A -> ( A |_| 2o ) ~<_ ~P A )

Proof

Step Hyp Ref Expression
1 1sdom2
 |-  1o ~< 2o
2 djuxpdom
 |-  ( ( 1o ~< A /\ 1o ~< 2o ) -> ( A |_| 2o ) ~<_ ( A X. 2o ) )
3 1 2 mpan2
 |-  ( 1o ~< A -> ( A |_| 2o ) ~<_ ( A X. 2o ) )
4 sdom0
 |-  -. 1o ~< (/)
5 breq2
 |-  ( A = (/) -> ( 1o ~< A <-> 1o ~< (/) ) )
6 4 5 mtbiri
 |-  ( A = (/) -> -. 1o ~< A )
7 6 con2i
 |-  ( 1o ~< A -> -. A = (/) )
8 neq0
 |-  ( -. A = (/) <-> E. x x e. A )
9 7 8 sylib
 |-  ( 1o ~< A -> E. x x e. A )
10 relsdom
 |-  Rel ~<
11 10 brrelex2i
 |-  ( 1o ~< A -> A e. _V )
12 11 adantr
 |-  ( ( 1o ~< A /\ x e. A ) -> A e. _V )
13 enrefg
 |-  ( A e. _V -> A ~~ A )
14 12 13 syl
 |-  ( ( 1o ~< A /\ x e. A ) -> A ~~ A )
15 df2o2
 |-  2o = { (/) , { (/) } }
16 pwpw0
 |-  ~P { (/) } = { (/) , { (/) } }
17 15 16 eqtr4i
 |-  2o = ~P { (/) }
18 0ex
 |-  (/) e. _V
19 vex
 |-  x e. _V
20 en2sn
 |-  ( ( (/) e. _V /\ x e. _V ) -> { (/) } ~~ { x } )
21 18 19 20 mp2an
 |-  { (/) } ~~ { x }
22 pwen
 |-  ( { (/) } ~~ { x } -> ~P { (/) } ~~ ~P { x } )
23 21 22 ax-mp
 |-  ~P { (/) } ~~ ~P { x }
24 17 23 eqbrtri
 |-  2o ~~ ~P { x }
25 xpen
 |-  ( ( A ~~ A /\ 2o ~~ ~P { x } ) -> ( A X. 2o ) ~~ ( A X. ~P { x } ) )
26 14 24 25 sylancl
 |-  ( ( 1o ~< A /\ x e. A ) -> ( A X. 2o ) ~~ ( A X. ~P { x } ) )
27 snex
 |-  { x } e. _V
28 27 pwex
 |-  ~P { x } e. _V
29 uncom
 |-  ( ( A \ { x } ) u. { x } ) = ( { x } u. ( A \ { x } ) )
30 simpr
 |-  ( ( 1o ~< A /\ x e. A ) -> x e. A )
31 30 snssd
 |-  ( ( 1o ~< A /\ x e. A ) -> { x } C_ A )
32 undif
 |-  ( { x } C_ A <-> ( { x } u. ( A \ { x } ) ) = A )
33 31 32 sylib
 |-  ( ( 1o ~< A /\ x e. A ) -> ( { x } u. ( A \ { x } ) ) = A )
34 29 33 syl5eq
 |-  ( ( 1o ~< A /\ x e. A ) -> ( ( A \ { x } ) u. { x } ) = A )
35 difexg
 |-  ( A e. _V -> ( A \ { x } ) e. _V )
36 12 35 syl
 |-  ( ( 1o ~< A /\ x e. A ) -> ( A \ { x } ) e. _V )
37 canth2g
 |-  ( ( A \ { x } ) e. _V -> ( A \ { x } ) ~< ~P ( A \ { x } ) )
38 domunsn
 |-  ( ( A \ { x } ) ~< ~P ( A \ { x } ) -> ( ( A \ { x } ) u. { x } ) ~<_ ~P ( A \ { x } ) )
39 36 37 38 3syl
 |-  ( ( 1o ~< A /\ x e. A ) -> ( ( A \ { x } ) u. { x } ) ~<_ ~P ( A \ { x } ) )
40 34 39 eqbrtrrd
 |-  ( ( 1o ~< A /\ x e. A ) -> A ~<_ ~P ( A \ { x } ) )
41 xpdom1g
 |-  ( ( ~P { x } e. _V /\ A ~<_ ~P ( A \ { x } ) ) -> ( A X. ~P { x } ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) )
42 28 40 41 sylancr
 |-  ( ( 1o ~< A /\ x e. A ) -> ( A X. ~P { x } ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) )
43 endomtr
 |-  ( ( ( A X. 2o ) ~~ ( A X. ~P { x } ) /\ ( A X. ~P { x } ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) ) -> ( A X. 2o ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) )
44 26 42 43 syl2anc
 |-  ( ( 1o ~< A /\ x e. A ) -> ( A X. 2o ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) )
45 pwdjuen
 |-  ( ( ( A \ { x } ) e. _V /\ { x } e. _V ) -> ~P ( ( A \ { x } ) |_| { x } ) ~~ ( ~P ( A \ { x } ) X. ~P { x } ) )
46 36 27 45 sylancl
 |-  ( ( 1o ~< A /\ x e. A ) -> ~P ( ( A \ { x } ) |_| { x } ) ~~ ( ~P ( A \ { x } ) X. ~P { x } ) )
47 46 ensymd
 |-  ( ( 1o ~< A /\ x e. A ) -> ( ~P ( A \ { x } ) X. ~P { x } ) ~~ ~P ( ( A \ { x } ) |_| { x } ) )
48 domentr
 |-  ( ( ( A X. 2o ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) /\ ( ~P ( A \ { x } ) X. ~P { x } ) ~~ ~P ( ( A \ { x } ) |_| { x } ) ) -> ( A X. 2o ) ~<_ ~P ( ( A \ { x } ) |_| { x } ) )
49 44 47 48 syl2anc
 |-  ( ( 1o ~< A /\ x e. A ) -> ( A X. 2o ) ~<_ ~P ( ( A \ { x } ) |_| { x } ) )
50 27 a1i
 |-  ( ( 1o ~< A /\ x e. A ) -> { x } e. _V )
51 incom
 |-  ( ( A \ { x } ) i^i { x } ) = ( { x } i^i ( A \ { x } ) )
52 disjdif
 |-  ( { x } i^i ( A \ { x } ) ) = (/)
53 51 52 eqtri
 |-  ( ( A \ { x } ) i^i { x } ) = (/)
54 53 a1i
 |-  ( ( 1o ~< A /\ x e. A ) -> ( ( A \ { x } ) i^i { x } ) = (/) )
55 endjudisj
 |-  ( ( ( A \ { x } ) e. _V /\ { x } e. _V /\ ( ( A \ { x } ) i^i { x } ) = (/) ) -> ( ( A \ { x } ) |_| { x } ) ~~ ( ( A \ { x } ) u. { x } ) )
56 36 50 54 55 syl3anc
 |-  ( ( 1o ~< A /\ x e. A ) -> ( ( A \ { x } ) |_| { x } ) ~~ ( ( A \ { x } ) u. { x } ) )
57 56 34 breqtrd
 |-  ( ( 1o ~< A /\ x e. A ) -> ( ( A \ { x } ) |_| { x } ) ~~ A )
58 pwen
 |-  ( ( ( A \ { x } ) |_| { x } ) ~~ A -> ~P ( ( A \ { x } ) |_| { x } ) ~~ ~P A )
59 57 58 syl
 |-  ( ( 1o ~< A /\ x e. A ) -> ~P ( ( A \ { x } ) |_| { x } ) ~~ ~P A )
60 domentr
 |-  ( ( ( A X. 2o ) ~<_ ~P ( ( A \ { x } ) |_| { x } ) /\ ~P ( ( A \ { x } ) |_| { x } ) ~~ ~P A ) -> ( A X. 2o ) ~<_ ~P A )
61 49 59 60 syl2anc
 |-  ( ( 1o ~< A /\ x e. A ) -> ( A X. 2o ) ~<_ ~P A )
62 9 61 exlimddv
 |-  ( 1o ~< A -> ( A X. 2o ) ~<_ ~P A )
63 domtr
 |-  ( ( ( A |_| 2o ) ~<_ ( A X. 2o ) /\ ( A X. 2o ) ~<_ ~P A ) -> ( A |_| 2o ) ~<_ ~P A )
64 3 62 63 syl2anc
 |-  ( 1o ~< A -> ( A |_| 2o ) ~<_ ~P A )