| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-dju |
|- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
| 2 |
|
0ex |
|- (/) e. _V |
| 3 |
|
relsdom |
|- Rel ~< |
| 4 |
3
|
brrelex2i |
|- ( 1o ~< A -> A e. _V ) |
| 5 |
|
xpsnen2g |
|- ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) |
| 6 |
2 4 5
|
sylancr |
|- ( 1o ~< A -> ( { (/) } X. A ) ~~ A ) |
| 7 |
|
sdomen2 |
|- ( ( { (/) } X. A ) ~~ A -> ( 1o ~< ( { (/) } X. A ) <-> 1o ~< A ) ) |
| 8 |
6 7
|
syl |
|- ( 1o ~< A -> ( 1o ~< ( { (/) } X. A ) <-> 1o ~< A ) ) |
| 9 |
8
|
ibir |
|- ( 1o ~< A -> 1o ~< ( { (/) } X. A ) ) |
| 10 |
|
1on |
|- 1o e. On |
| 11 |
3
|
brrelex2i |
|- ( 1o ~< B -> B e. _V ) |
| 12 |
|
xpsnen2g |
|- ( ( 1o e. On /\ B e. _V ) -> ( { 1o } X. B ) ~~ B ) |
| 13 |
10 11 12
|
sylancr |
|- ( 1o ~< B -> ( { 1o } X. B ) ~~ B ) |
| 14 |
|
sdomen2 |
|- ( ( { 1o } X. B ) ~~ B -> ( 1o ~< ( { 1o } X. B ) <-> 1o ~< B ) ) |
| 15 |
13 14
|
syl |
|- ( 1o ~< B -> ( 1o ~< ( { 1o } X. B ) <-> 1o ~< B ) ) |
| 16 |
15
|
ibir |
|- ( 1o ~< B -> 1o ~< ( { 1o } X. B ) ) |
| 17 |
|
unxpdom |
|- ( ( 1o ~< ( { (/) } X. A ) /\ 1o ~< ( { 1o } X. B ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~<_ ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ) |
| 18 |
9 16 17
|
syl2an |
|- ( ( 1o ~< A /\ 1o ~< B ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~<_ ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ) |
| 19 |
1 18
|
eqbrtrid |
|- ( ( 1o ~< A /\ 1o ~< B ) -> ( A |_| B ) ~<_ ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ) |
| 20 |
|
xpen |
|- ( ( ( { (/) } X. A ) ~~ A /\ ( { 1o } X. B ) ~~ B ) -> ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ~~ ( A X. B ) ) |
| 21 |
6 13 20
|
syl2an |
|- ( ( 1o ~< A /\ 1o ~< B ) -> ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ~~ ( A X. B ) ) |
| 22 |
|
domentr |
|- ( ( ( A |_| B ) ~<_ ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) /\ ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ~~ ( A X. B ) ) -> ( A |_| B ) ~<_ ( A X. B ) ) |
| 23 |
19 21 22
|
syl2anc |
|- ( ( 1o ~< A /\ 1o ~< B ) -> ( A |_| B ) ~<_ ( A X. B ) ) |