| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-dju |
⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) |
| 2 |
|
0ex |
⊢ ∅ ∈ V |
| 3 |
|
relsdom |
⊢ Rel ≺ |
| 4 |
3
|
brrelex2i |
⊢ ( 1o ≺ 𝐴 → 𝐴 ∈ V ) |
| 5 |
|
xpsnen2g |
⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 6 |
2 4 5
|
sylancr |
⊢ ( 1o ≺ 𝐴 → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 7 |
|
sdomen2 |
⊢ ( ( { ∅ } × 𝐴 ) ≈ 𝐴 → ( 1o ≺ ( { ∅ } × 𝐴 ) ↔ 1o ≺ 𝐴 ) ) |
| 8 |
6 7
|
syl |
⊢ ( 1o ≺ 𝐴 → ( 1o ≺ ( { ∅ } × 𝐴 ) ↔ 1o ≺ 𝐴 ) ) |
| 9 |
8
|
ibir |
⊢ ( 1o ≺ 𝐴 → 1o ≺ ( { ∅ } × 𝐴 ) ) |
| 10 |
|
1on |
⊢ 1o ∈ On |
| 11 |
3
|
brrelex2i |
⊢ ( 1o ≺ 𝐵 → 𝐵 ∈ V ) |
| 12 |
|
xpsnen2g |
⊢ ( ( 1o ∈ On ∧ 𝐵 ∈ V ) → ( { 1o } × 𝐵 ) ≈ 𝐵 ) |
| 13 |
10 11 12
|
sylancr |
⊢ ( 1o ≺ 𝐵 → ( { 1o } × 𝐵 ) ≈ 𝐵 ) |
| 14 |
|
sdomen2 |
⊢ ( ( { 1o } × 𝐵 ) ≈ 𝐵 → ( 1o ≺ ( { 1o } × 𝐵 ) ↔ 1o ≺ 𝐵 ) ) |
| 15 |
13 14
|
syl |
⊢ ( 1o ≺ 𝐵 → ( 1o ≺ ( { 1o } × 𝐵 ) ↔ 1o ≺ 𝐵 ) ) |
| 16 |
15
|
ibir |
⊢ ( 1o ≺ 𝐵 → 1o ≺ ( { 1o } × 𝐵 ) ) |
| 17 |
|
unxpdom |
⊢ ( ( 1o ≺ ( { ∅ } × 𝐴 ) ∧ 1o ≺ ( { 1o } × 𝐵 ) ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ≼ ( ( { ∅ } × 𝐴 ) × ( { 1o } × 𝐵 ) ) ) |
| 18 |
9 16 17
|
syl2an |
⊢ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ≼ ( ( { ∅ } × 𝐴 ) × ( { 1o } × 𝐵 ) ) ) |
| 19 |
1 18
|
eqbrtrid |
⊢ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( ( { ∅ } × 𝐴 ) × ( { 1o } × 𝐵 ) ) ) |
| 20 |
|
xpen |
⊢ ( ( ( { ∅ } × 𝐴 ) ≈ 𝐴 ∧ ( { 1o } × 𝐵 ) ≈ 𝐵 ) → ( ( { ∅ } × 𝐴 ) × ( { 1o } × 𝐵 ) ) ≈ ( 𝐴 × 𝐵 ) ) |
| 21 |
6 13 20
|
syl2an |
⊢ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( ( { ∅ } × 𝐴 ) × ( { 1o } × 𝐵 ) ) ≈ ( 𝐴 × 𝐵 ) ) |
| 22 |
|
domentr |
⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( ( { ∅ } × 𝐴 ) × ( { 1o } × 𝐵 ) ) ∧ ( ( { ∅ } × 𝐴 ) × ( { 1o } × 𝐵 ) ) ≈ ( 𝐴 × 𝐵 ) ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) |
| 23 |
19 21 22
|
syl2anc |
⊢ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) |