Metamath Proof Explorer


Theorem unxpdom

Description: Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of TakeutiZaring p. 93. (Contributed by Mario Carneiro, 13-Jan-2013) (Proof shortened by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion unxpdom ( ( 1o𝐴 ∧ 1o𝐵 ) → ( 𝐴𝐵 ) ≼ ( 𝐴 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 relsdom Rel ≺
2 1 brrelex2i ( 1o𝐴𝐴 ∈ V )
3 1 brrelex2i ( 1o𝐵𝐵 ∈ V )
4 2 3 anim12i ( ( 1o𝐴 ∧ 1o𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
5 breq2 ( 𝑥 = 𝐴 → ( 1o𝑥 ↔ 1o𝐴 ) )
6 5 anbi1d ( 𝑥 = 𝐴 → ( ( 1o𝑥 ∧ 1o𝑦 ) ↔ ( 1o𝐴 ∧ 1o𝑦 ) ) )
7 uneq1 ( 𝑥 = 𝐴 → ( 𝑥𝑦 ) = ( 𝐴𝑦 ) )
8 xpeq1 ( 𝑥 = 𝐴 → ( 𝑥 × 𝑦 ) = ( 𝐴 × 𝑦 ) )
9 7 8 breq12d ( 𝑥 = 𝐴 → ( ( 𝑥𝑦 ) ≼ ( 𝑥 × 𝑦 ) ↔ ( 𝐴𝑦 ) ≼ ( 𝐴 × 𝑦 ) ) )
10 6 9 imbi12d ( 𝑥 = 𝐴 → ( ( ( 1o𝑥 ∧ 1o𝑦 ) → ( 𝑥𝑦 ) ≼ ( 𝑥 × 𝑦 ) ) ↔ ( ( 1o𝐴 ∧ 1o𝑦 ) → ( 𝐴𝑦 ) ≼ ( 𝐴 × 𝑦 ) ) ) )
11 breq2 ( 𝑦 = 𝐵 → ( 1o𝑦 ↔ 1o𝐵 ) )
12 11 anbi2d ( 𝑦 = 𝐵 → ( ( 1o𝐴 ∧ 1o𝑦 ) ↔ ( 1o𝐴 ∧ 1o𝐵 ) ) )
13 uneq2 ( 𝑦 = 𝐵 → ( 𝐴𝑦 ) = ( 𝐴𝐵 ) )
14 xpeq2 ( 𝑦 = 𝐵 → ( 𝐴 × 𝑦 ) = ( 𝐴 × 𝐵 ) )
15 13 14 breq12d ( 𝑦 = 𝐵 → ( ( 𝐴𝑦 ) ≼ ( 𝐴 × 𝑦 ) ↔ ( 𝐴𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) )
16 12 15 imbi12d ( 𝑦 = 𝐵 → ( ( ( 1o𝐴 ∧ 1o𝑦 ) → ( 𝐴𝑦 ) ≼ ( 𝐴 × 𝑦 ) ) ↔ ( ( 1o𝐴 ∧ 1o𝐵 ) → ( 𝐴𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) ) )
17 eqid ( 𝑧 ∈ ( 𝑥𝑦 ) ↦ if ( 𝑧𝑥 , ⟨ 𝑧 , if ( 𝑧 = 𝑣 , 𝑤 , 𝑡 ) ⟩ , ⟨ if ( 𝑧 = 𝑤 , 𝑢 , 𝑣 ) , 𝑧 ⟩ ) ) = ( 𝑧 ∈ ( 𝑥𝑦 ) ↦ if ( 𝑧𝑥 , ⟨ 𝑧 , if ( 𝑧 = 𝑣 , 𝑤 , 𝑡 ) ⟩ , ⟨ if ( 𝑧 = 𝑤 , 𝑢 , 𝑣 ) , 𝑧 ⟩ ) )
18 eqid if ( 𝑧𝑥 , ⟨ 𝑧 , if ( 𝑧 = 𝑣 , 𝑤 , 𝑡 ) ⟩ , ⟨ if ( 𝑧 = 𝑤 , 𝑢 , 𝑣 ) , 𝑧 ⟩ ) = if ( 𝑧𝑥 , ⟨ 𝑧 , if ( 𝑧 = 𝑣 , 𝑤 , 𝑡 ) ⟩ , ⟨ if ( 𝑧 = 𝑤 , 𝑢 , 𝑣 ) , 𝑧 ⟩ )
19 17 18 unxpdomlem3 ( ( 1o𝑥 ∧ 1o𝑦 ) → ( 𝑥𝑦 ) ≼ ( 𝑥 × 𝑦 ) )
20 10 16 19 vtocl2g ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( 1o𝐴 ∧ 1o𝐵 ) → ( 𝐴𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) )
21 4 20 mpcom ( ( 1o𝐴 ∧ 1o𝐵 ) → ( 𝐴𝐵 ) ≼ ( 𝐴 × 𝐵 ) )