Step |
Hyp |
Ref |
Expression |
1 |
|
relsdom |
⊢ Rel ≺ |
2 |
1
|
brrelex2i |
⊢ ( 1o ≺ 𝐴 → 𝐴 ∈ V ) |
3 |
1
|
brrelex2i |
⊢ ( 1o ≺ 𝐵 → 𝐵 ∈ V ) |
4 |
2 3
|
anim12i |
⊢ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
5 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 1o ≺ 𝑥 ↔ 1o ≺ 𝐴 ) ) |
6 |
5
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 1o ≺ 𝑥 ∧ 1o ≺ 𝑦 ) ↔ ( 1o ≺ 𝐴 ∧ 1o ≺ 𝑦 ) ) ) |
7 |
|
uneq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∪ 𝑦 ) = ( 𝐴 ∪ 𝑦 ) ) |
8 |
|
xpeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 × 𝑦 ) = ( 𝐴 × 𝑦 ) ) |
9 |
7 8
|
breq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∪ 𝑦 ) ≼ ( 𝑥 × 𝑦 ) ↔ ( 𝐴 ∪ 𝑦 ) ≼ ( 𝐴 × 𝑦 ) ) ) |
10 |
6 9
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 1o ≺ 𝑥 ∧ 1o ≺ 𝑦 ) → ( 𝑥 ∪ 𝑦 ) ≼ ( 𝑥 × 𝑦 ) ) ↔ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝑦 ) → ( 𝐴 ∪ 𝑦 ) ≼ ( 𝐴 × 𝑦 ) ) ) ) |
11 |
|
breq2 |
⊢ ( 𝑦 = 𝐵 → ( 1o ≺ 𝑦 ↔ 1o ≺ 𝐵 ) ) |
12 |
11
|
anbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝑦 ) ↔ ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) ) ) |
13 |
|
uneq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∪ 𝑦 ) = ( 𝐴 ∪ 𝐵 ) ) |
14 |
|
xpeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 × 𝑦 ) = ( 𝐴 × 𝐵 ) ) |
15 |
13 14
|
breq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∪ 𝑦 ) ≼ ( 𝐴 × 𝑦 ) ↔ ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) ) |
16 |
12 15
|
imbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝑦 ) → ( 𝐴 ∪ 𝑦 ) ≼ ( 𝐴 × 𝑦 ) ) ↔ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) ) ) |
17 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝑥 ∪ 𝑦 ) ↦ if ( 𝑧 ∈ 𝑥 , 〈 𝑧 , if ( 𝑧 = 𝑣 , 𝑤 , 𝑡 ) 〉 , 〈 if ( 𝑧 = 𝑤 , 𝑢 , 𝑣 ) , 𝑧 〉 ) ) = ( 𝑧 ∈ ( 𝑥 ∪ 𝑦 ) ↦ if ( 𝑧 ∈ 𝑥 , 〈 𝑧 , if ( 𝑧 = 𝑣 , 𝑤 , 𝑡 ) 〉 , 〈 if ( 𝑧 = 𝑤 , 𝑢 , 𝑣 ) , 𝑧 〉 ) ) |
18 |
|
eqid |
⊢ if ( 𝑧 ∈ 𝑥 , 〈 𝑧 , if ( 𝑧 = 𝑣 , 𝑤 , 𝑡 ) 〉 , 〈 if ( 𝑧 = 𝑤 , 𝑢 , 𝑣 ) , 𝑧 〉 ) = if ( 𝑧 ∈ 𝑥 , 〈 𝑧 , if ( 𝑧 = 𝑣 , 𝑤 , 𝑡 ) 〉 , 〈 if ( 𝑧 = 𝑤 , 𝑢 , 𝑣 ) , 𝑧 〉 ) |
19 |
17 18
|
unxpdomlem3 |
⊢ ( ( 1o ≺ 𝑥 ∧ 1o ≺ 𝑦 ) → ( 𝑥 ∪ 𝑦 ) ≼ ( 𝑥 × 𝑦 ) ) |
20 |
10 16 19
|
vtocl2g |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) ) |
21 |
4 20
|
mpcom |
⊢ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) |