Metamath Proof Explorer


Theorem unxpdom

Description: Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of TakeutiZaring p. 93. (Contributed by Mario Carneiro, 13-Jan-2013) (Proof shortened by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion unxpdom 1𝑜A1𝑜BABA×B

Proof

Step Hyp Ref Expression
1 relsdom Rel
2 1 brrelex2i 1𝑜AAV
3 1 brrelex2i 1𝑜BBV
4 2 3 anim12i 1𝑜A1𝑜BAVBV
5 breq2 x=A1𝑜x1𝑜A
6 5 anbi1d x=A1𝑜x1𝑜y1𝑜A1𝑜y
7 uneq1 x=Axy=Ay
8 xpeq1 x=Ax×y=A×y
9 7 8 breq12d x=Axyx×yAyA×y
10 6 9 imbi12d x=A1𝑜x1𝑜yxyx×y1𝑜A1𝑜yAyA×y
11 breq2 y=B1𝑜y1𝑜B
12 11 anbi2d y=B1𝑜A1𝑜y1𝑜A1𝑜B
13 uneq2 y=BAy=AB
14 xpeq2 y=BA×y=A×B
15 13 14 breq12d y=BAyA×yABA×B
16 12 15 imbi12d y=B1𝑜A1𝑜yAyA×y1𝑜A1𝑜BABA×B
17 eqid zxyifzxzifz=vwtifz=wuvz=zxyifzxzifz=vwtifz=wuvz
18 eqid ifzxzifz=vwtifz=wuvz=ifzxzifz=vwtifz=wuvz
19 17 18 unxpdomlem3 1𝑜x1𝑜yxyx×y
20 10 16 19 vtocl2g AVBV1𝑜A1𝑜BABA×B
21 4 20 mpcom 1𝑜A1𝑜BABA×B