Step |
Hyp |
Ref |
Expression |
1 |
|
canthp1lem2.1 |
|- ( ph -> 1o ~< A ) |
2 |
|
canthp1lem2.2 |
|- ( ph -> F : ~P A -1-1-onto-> ( A |_| 1o ) ) |
3 |
|
canthp1lem2.3 |
|- ( ph -> G : ( ( A |_| 1o ) \ { ( F ` A ) } ) -1-1-onto-> A ) |
4 |
|
canthp1lem2.4 |
|- H = ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) |
5 |
|
canthp1lem2.5 |
|- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( H ` ( `' r " { y } ) ) = y ) ) } |
6 |
|
canthp1lem2.6 |
|- B = U. dom W |
7 |
|
relsdom |
|- Rel ~< |
8 |
7
|
brrelex2i |
|- ( 1o ~< A -> A e. _V ) |
9 |
1 8
|
syl |
|- ( ph -> A e. _V ) |
10 |
9
|
pwexd |
|- ( ph -> ~P A e. _V ) |
11 |
|
f1oeng |
|- ( ( ~P A e. _V /\ F : ~P A -1-1-onto-> ( A |_| 1o ) ) -> ~P A ~~ ( A |_| 1o ) ) |
12 |
10 2 11
|
syl2anc |
|- ( ph -> ~P A ~~ ( A |_| 1o ) ) |
13 |
12
|
ensymd |
|- ( ph -> ( A |_| 1o ) ~~ ~P A ) |
14 |
|
canth2g |
|- ( A e. _V -> A ~< ~P A ) |
15 |
9 14
|
syl |
|- ( ph -> A ~< ~P A ) |
16 |
|
sdomen2 |
|- ( ~P A ~~ ( A |_| 1o ) -> ( A ~< ~P A <-> A ~< ( A |_| 1o ) ) ) |
17 |
12 16
|
syl |
|- ( ph -> ( A ~< ~P A <-> A ~< ( A |_| 1o ) ) ) |
18 |
15 17
|
mpbid |
|- ( ph -> A ~< ( A |_| 1o ) ) |
19 |
|
sdomnen |
|- ( A ~< ( A |_| 1o ) -> -. A ~~ ( A |_| 1o ) ) |
20 |
18 19
|
syl |
|- ( ph -> -. A ~~ ( A |_| 1o ) ) |
21 |
|
omelon |
|- _om e. On |
22 |
|
onenon |
|- ( _om e. On -> _om e. dom card ) |
23 |
21 22
|
ax-mp |
|- _om e. dom card |
24 |
|
dff1o3 |
|- ( F : ~P A -1-1-onto-> ( A |_| 1o ) <-> ( F : ~P A -onto-> ( A |_| 1o ) /\ Fun `' F ) ) |
25 |
24
|
simprbi |
|- ( F : ~P A -1-1-onto-> ( A |_| 1o ) -> Fun `' F ) |
26 |
2 25
|
syl |
|- ( ph -> Fun `' F ) |
27 |
|
f1ofo |
|- ( F : ~P A -1-1-onto-> ( A |_| 1o ) -> F : ~P A -onto-> ( A |_| 1o ) ) |
28 |
2 27
|
syl |
|- ( ph -> F : ~P A -onto-> ( A |_| 1o ) ) |
29 |
|
f1ofn |
|- ( F : ~P A -1-1-onto-> ( A |_| 1o ) -> F Fn ~P A ) |
30 |
|
fnresdm |
|- ( F Fn ~P A -> ( F |` ~P A ) = F ) |
31 |
|
foeq1 |
|- ( ( F |` ~P A ) = F -> ( ( F |` ~P A ) : ~P A -onto-> ( A |_| 1o ) <-> F : ~P A -onto-> ( A |_| 1o ) ) ) |
32 |
2 29 30 31
|
4syl |
|- ( ph -> ( ( F |` ~P A ) : ~P A -onto-> ( A |_| 1o ) <-> F : ~P A -onto-> ( A |_| 1o ) ) ) |
33 |
28 32
|
mpbird |
|- ( ph -> ( F |` ~P A ) : ~P A -onto-> ( A |_| 1o ) ) |
34 |
|
fvex |
|- ( F ` A ) e. _V |
35 |
|
f1osng |
|- ( ( A e. _V /\ ( F ` A ) e. _V ) -> { <. A , ( F ` A ) >. } : { A } -1-1-onto-> { ( F ` A ) } ) |
36 |
9 34 35
|
sylancl |
|- ( ph -> { <. A , ( F ` A ) >. } : { A } -1-1-onto-> { ( F ` A ) } ) |
37 |
2 29
|
syl |
|- ( ph -> F Fn ~P A ) |
38 |
|
pwidg |
|- ( A e. _V -> A e. ~P A ) |
39 |
9 38
|
syl |
|- ( ph -> A e. ~P A ) |
40 |
|
fnressn |
|- ( ( F Fn ~P A /\ A e. ~P A ) -> ( F |` { A } ) = { <. A , ( F ` A ) >. } ) |
41 |
37 39 40
|
syl2anc |
|- ( ph -> ( F |` { A } ) = { <. A , ( F ` A ) >. } ) |
42 |
41
|
f1oeq1d |
|- ( ph -> ( ( F |` { A } ) : { A } -1-1-onto-> { ( F ` A ) } <-> { <. A , ( F ` A ) >. } : { A } -1-1-onto-> { ( F ` A ) } ) ) |
43 |
36 42
|
mpbird |
|- ( ph -> ( F |` { A } ) : { A } -1-1-onto-> { ( F ` A ) } ) |
44 |
|
f1ofo |
|- ( ( F |` { A } ) : { A } -1-1-onto-> { ( F ` A ) } -> ( F |` { A } ) : { A } -onto-> { ( F ` A ) } ) |
45 |
43 44
|
syl |
|- ( ph -> ( F |` { A } ) : { A } -onto-> { ( F ` A ) } ) |
46 |
|
resdif |
|- ( ( Fun `' F /\ ( F |` ~P A ) : ~P A -onto-> ( A |_| 1o ) /\ ( F |` { A } ) : { A } -onto-> { ( F ` A ) } ) -> ( F |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-onto-> ( ( A |_| 1o ) \ { ( F ` A ) } ) ) |
47 |
26 33 45 46
|
syl3anc |
|- ( ph -> ( F |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-onto-> ( ( A |_| 1o ) \ { ( F ` A ) } ) ) |
48 |
|
f1oco |
|- ( ( G : ( ( A |_| 1o ) \ { ( F ` A ) } ) -1-1-onto-> A /\ ( F |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-onto-> ( ( A |_| 1o ) \ { ( F ` A ) } ) ) -> ( G o. ( F |` ( ~P A \ { A } ) ) ) : ( ~P A \ { A } ) -1-1-onto-> A ) |
49 |
3 47 48
|
syl2anc |
|- ( ph -> ( G o. ( F |` ( ~P A \ { A } ) ) ) : ( ~P A \ { A } ) -1-1-onto-> A ) |
50 |
|
resco |
|- ( ( G o. F ) |` ( ~P A \ { A } ) ) = ( G o. ( F |` ( ~P A \ { A } ) ) ) |
51 |
|
f1oeq1 |
|- ( ( ( G o. F ) |` ( ~P A \ { A } ) ) = ( G o. ( F |` ( ~P A \ { A } ) ) ) -> ( ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-onto-> A <-> ( G o. ( F |` ( ~P A \ { A } ) ) ) : ( ~P A \ { A } ) -1-1-onto-> A ) ) |
52 |
50 51
|
ax-mp |
|- ( ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-onto-> A <-> ( G o. ( F |` ( ~P A \ { A } ) ) ) : ( ~P A \ { A } ) -1-1-onto-> A ) |
53 |
49 52
|
sylibr |
|- ( ph -> ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-onto-> A ) |
54 |
|
f1of |
|- ( ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-onto-> A -> ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) --> A ) |
55 |
53 54
|
syl |
|- ( ph -> ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) --> A ) |
56 |
|
0elpw |
|- (/) e. ~P A |
57 |
56
|
a1i |
|- ( ( ( ph /\ x e. ~P A ) /\ x = A ) -> (/) e. ~P A ) |
58 |
|
sdom0 |
|- -. 1o ~< (/) |
59 |
|
breq2 |
|- ( (/) = A -> ( 1o ~< (/) <-> 1o ~< A ) ) |
60 |
58 59
|
mtbii |
|- ( (/) = A -> -. 1o ~< A ) |
61 |
60
|
necon2ai |
|- ( 1o ~< A -> (/) =/= A ) |
62 |
1 61
|
syl |
|- ( ph -> (/) =/= A ) |
63 |
62
|
ad2antrr |
|- ( ( ( ph /\ x e. ~P A ) /\ x = A ) -> (/) =/= A ) |
64 |
|
eldifsn |
|- ( (/) e. ( ~P A \ { A } ) <-> ( (/) e. ~P A /\ (/) =/= A ) ) |
65 |
57 63 64
|
sylanbrc |
|- ( ( ( ph /\ x e. ~P A ) /\ x = A ) -> (/) e. ( ~P A \ { A } ) ) |
66 |
|
simplr |
|- ( ( ( ph /\ x e. ~P A ) /\ -. x = A ) -> x e. ~P A ) |
67 |
|
simpr |
|- ( ( ( ph /\ x e. ~P A ) /\ -. x = A ) -> -. x = A ) |
68 |
67
|
neqned |
|- ( ( ( ph /\ x e. ~P A ) /\ -. x = A ) -> x =/= A ) |
69 |
|
eldifsn |
|- ( x e. ( ~P A \ { A } ) <-> ( x e. ~P A /\ x =/= A ) ) |
70 |
66 68 69
|
sylanbrc |
|- ( ( ( ph /\ x e. ~P A ) /\ -. x = A ) -> x e. ( ~P A \ { A } ) ) |
71 |
65 70
|
ifclda |
|- ( ( ph /\ x e. ~P A ) -> if ( x = A , (/) , x ) e. ( ~P A \ { A } ) ) |
72 |
71
|
fmpttd |
|- ( ph -> ( x e. ~P A |-> if ( x = A , (/) , x ) ) : ~P A --> ( ~P A \ { A } ) ) |
73 |
55 72
|
fcod |
|- ( ph -> ( ( ( G o. F ) |` ( ~P A \ { A } ) ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) : ~P A --> A ) |
74 |
72
|
frnd |
|- ( ph -> ran ( x e. ~P A |-> if ( x = A , (/) , x ) ) C_ ( ~P A \ { A } ) ) |
75 |
|
cores |
|- ( ran ( x e. ~P A |-> if ( x = A , (/) , x ) ) C_ ( ~P A \ { A } ) -> ( ( ( G o. F ) |` ( ~P A \ { A } ) ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) = ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) ) |
76 |
74 75
|
syl |
|- ( ph -> ( ( ( G o. F ) |` ( ~P A \ { A } ) ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) = ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) ) |
77 |
76 4
|
eqtr4di |
|- ( ph -> ( ( ( G o. F ) |` ( ~P A \ { A } ) ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) = H ) |
78 |
77
|
feq1d |
|- ( ph -> ( ( ( ( G o. F ) |` ( ~P A \ { A } ) ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) : ~P A --> A <-> H : ~P A --> A ) ) |
79 |
73 78
|
mpbid |
|- ( ph -> H : ~P A --> A ) |
80 |
|
inss1 |
|- ( ~P A i^i dom card ) C_ ~P A |
81 |
80
|
a1i |
|- ( ph -> ( ~P A i^i dom card ) C_ ~P A ) |
82 |
|
eqid |
|- ( `' ( W ` B ) " { ( H ` B ) } ) = ( `' ( W ` B ) " { ( H ` B ) } ) |
83 |
5 6 82
|
canth4 |
|- ( ( A e. _V /\ H : ~P A --> A /\ ( ~P A i^i dom card ) C_ ~P A ) -> ( B C_ A /\ ( `' ( W ` B ) " { ( H ` B ) } ) C. B /\ ( H ` B ) = ( H ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) ) |
84 |
9 79 81 83
|
syl3anc |
|- ( ph -> ( B C_ A /\ ( `' ( W ` B ) " { ( H ` B ) } ) C. B /\ ( H ` B ) = ( H ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) ) |
85 |
84
|
simp1d |
|- ( ph -> B C_ A ) |
86 |
84
|
simp2d |
|- ( ph -> ( `' ( W ` B ) " { ( H ` B ) } ) C. B ) |
87 |
86
|
pssned |
|- ( ph -> ( `' ( W ` B ) " { ( H ` B ) } ) =/= B ) |
88 |
87
|
necomd |
|- ( ph -> B =/= ( `' ( W ` B ) " { ( H ` B ) } ) ) |
89 |
84
|
simp3d |
|- ( ph -> ( H ` B ) = ( H ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
90 |
4
|
fveq1i |
|- ( H ` B ) = ( ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) ` B ) |
91 |
4
|
fveq1i |
|- ( H ` ( `' ( W ` B ) " { ( H ` B ) } ) ) = ( ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) |
92 |
89 90 91
|
3eqtr3g |
|- ( ph -> ( ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) ` B ) = ( ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
93 |
9 85
|
sselpwd |
|- ( ph -> B e. ~P A ) |
94 |
72 93
|
fvco3d |
|- ( ph -> ( ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) ` B ) = ( ( G o. F ) ` ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` B ) ) ) |
95 |
86
|
pssssd |
|- ( ph -> ( `' ( W ` B ) " { ( H ` B ) } ) C_ B ) |
96 |
95 85
|
sstrd |
|- ( ph -> ( `' ( W ` B ) " { ( H ` B ) } ) C_ A ) |
97 |
9 96
|
sselpwd |
|- ( ph -> ( `' ( W ` B ) " { ( H ` B ) } ) e. ~P A ) |
98 |
72 97
|
fvco3d |
|- ( ph -> ( ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) = ( ( G o. F ) ` ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) ) |
99 |
92 94 98
|
3eqtr3d |
|- ( ph -> ( ( G o. F ) ` ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` B ) ) = ( ( G o. F ) ` ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) ) |
100 |
99
|
adantr |
|- ( ( ph /\ B C. A ) -> ( ( G o. F ) ` ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` B ) ) = ( ( G o. F ) ` ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) ) |
101 |
|
eqid |
|- ( x e. ~P A |-> if ( x = A , (/) , x ) ) = ( x e. ~P A |-> if ( x = A , (/) , x ) ) |
102 |
|
eqeq1 |
|- ( x = B -> ( x = A <-> B = A ) ) |
103 |
|
id |
|- ( x = B -> x = B ) |
104 |
102 103
|
ifbieq2d |
|- ( x = B -> if ( x = A , (/) , x ) = if ( B = A , (/) , B ) ) |
105 |
|
ifcl |
|- ( ( (/) e. ~P A /\ B e. ~P A ) -> if ( B = A , (/) , B ) e. ~P A ) |
106 |
56 93 105
|
sylancr |
|- ( ph -> if ( B = A , (/) , B ) e. ~P A ) |
107 |
101 104 93 106
|
fvmptd3 |
|- ( ph -> ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` B ) = if ( B = A , (/) , B ) ) |
108 |
|
pssne |
|- ( B C. A -> B =/= A ) |
109 |
108
|
neneqd |
|- ( B C. A -> -. B = A ) |
110 |
109
|
iffalsed |
|- ( B C. A -> if ( B = A , (/) , B ) = B ) |
111 |
107 110
|
sylan9eq |
|- ( ( ph /\ B C. A ) -> ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` B ) = B ) |
112 |
111
|
fveq2d |
|- ( ( ph /\ B C. A ) -> ( ( G o. F ) ` ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` B ) ) = ( ( G o. F ) ` B ) ) |
113 |
|
eqeq1 |
|- ( x = ( `' ( W ` B ) " { ( H ` B ) } ) -> ( x = A <-> ( `' ( W ` B ) " { ( H ` B ) } ) = A ) ) |
114 |
|
id |
|- ( x = ( `' ( W ` B ) " { ( H ` B ) } ) -> x = ( `' ( W ` B ) " { ( H ` B ) } ) ) |
115 |
113 114
|
ifbieq2d |
|- ( x = ( `' ( W ` B ) " { ( H ` B ) } ) -> if ( x = A , (/) , x ) = if ( ( `' ( W ` B ) " { ( H ` B ) } ) = A , (/) , ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
116 |
|
ifcl |
|- ( ( (/) e. ~P A /\ ( `' ( W ` B ) " { ( H ` B ) } ) e. ~P A ) -> if ( ( `' ( W ` B ) " { ( H ` B ) } ) = A , (/) , ( `' ( W ` B ) " { ( H ` B ) } ) ) e. ~P A ) |
117 |
56 97 116
|
sylancr |
|- ( ph -> if ( ( `' ( W ` B ) " { ( H ` B ) } ) = A , (/) , ( `' ( W ` B ) " { ( H ` B ) } ) ) e. ~P A ) |
118 |
101 115 97 117
|
fvmptd3 |
|- ( ph -> ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) = if ( ( `' ( W ` B ) " { ( H ` B ) } ) = A , (/) , ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
119 |
118
|
adantr |
|- ( ( ph /\ B C. A ) -> ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) = if ( ( `' ( W ` B ) " { ( H ` B ) } ) = A , (/) , ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
120 |
|
sspsstr |
|- ( ( ( `' ( W ` B ) " { ( H ` B ) } ) C_ B /\ B C. A ) -> ( `' ( W ` B ) " { ( H ` B ) } ) C. A ) |
121 |
95 120
|
sylan |
|- ( ( ph /\ B C. A ) -> ( `' ( W ` B ) " { ( H ` B ) } ) C. A ) |
122 |
121
|
pssned |
|- ( ( ph /\ B C. A ) -> ( `' ( W ` B ) " { ( H ` B ) } ) =/= A ) |
123 |
122
|
neneqd |
|- ( ( ph /\ B C. A ) -> -. ( `' ( W ` B ) " { ( H ` B ) } ) = A ) |
124 |
123
|
iffalsed |
|- ( ( ph /\ B C. A ) -> if ( ( `' ( W ` B ) " { ( H ` B ) } ) = A , (/) , ( `' ( W ` B ) " { ( H ` B ) } ) ) = ( `' ( W ` B ) " { ( H ` B ) } ) ) |
125 |
119 124
|
eqtrd |
|- ( ( ph /\ B C. A ) -> ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) = ( `' ( W ` B ) " { ( H ` B ) } ) ) |
126 |
125
|
fveq2d |
|- ( ( ph /\ B C. A ) -> ( ( G o. F ) ` ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) = ( ( G o. F ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
127 |
100 112 126
|
3eqtr3d |
|- ( ( ph /\ B C. A ) -> ( ( G o. F ) ` B ) = ( ( G o. F ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
128 |
93 108
|
anim12i |
|- ( ( ph /\ B C. A ) -> ( B e. ~P A /\ B =/= A ) ) |
129 |
|
eldifsn |
|- ( B e. ( ~P A \ { A } ) <-> ( B e. ~P A /\ B =/= A ) ) |
130 |
128 129
|
sylibr |
|- ( ( ph /\ B C. A ) -> B e. ( ~P A \ { A } ) ) |
131 |
130
|
fvresd |
|- ( ( ph /\ B C. A ) -> ( ( ( G o. F ) |` ( ~P A \ { A } ) ) ` B ) = ( ( G o. F ) ` B ) ) |
132 |
97
|
adantr |
|- ( ( ph /\ B C. A ) -> ( `' ( W ` B ) " { ( H ` B ) } ) e. ~P A ) |
133 |
|
eldifsn |
|- ( ( `' ( W ` B ) " { ( H ` B ) } ) e. ( ~P A \ { A } ) <-> ( ( `' ( W ` B ) " { ( H ` B ) } ) e. ~P A /\ ( `' ( W ` B ) " { ( H ` B ) } ) =/= A ) ) |
134 |
132 122 133
|
sylanbrc |
|- ( ( ph /\ B C. A ) -> ( `' ( W ` B ) " { ( H ` B ) } ) e. ( ~P A \ { A } ) ) |
135 |
134
|
fvresd |
|- ( ( ph /\ B C. A ) -> ( ( ( G o. F ) |` ( ~P A \ { A } ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) = ( ( G o. F ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
136 |
127 131 135
|
3eqtr4d |
|- ( ( ph /\ B C. A ) -> ( ( ( G o. F ) |` ( ~P A \ { A } ) ) ` B ) = ( ( ( G o. F ) |` ( ~P A \ { A } ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
137 |
|
f1of1 |
|- ( ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-onto-> A -> ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-> A ) |
138 |
53 137
|
syl |
|- ( ph -> ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-> A ) |
139 |
138
|
adantr |
|- ( ( ph /\ B C. A ) -> ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-> A ) |
140 |
|
f1fveq |
|- ( ( ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-> A /\ ( B e. ( ~P A \ { A } ) /\ ( `' ( W ` B ) " { ( H ` B ) } ) e. ( ~P A \ { A } ) ) ) -> ( ( ( ( G o. F ) |` ( ~P A \ { A } ) ) ` B ) = ( ( ( G o. F ) |` ( ~P A \ { A } ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) <-> B = ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
141 |
139 130 134 140
|
syl12anc |
|- ( ( ph /\ B C. A ) -> ( ( ( ( G o. F ) |` ( ~P A \ { A } ) ) ` B ) = ( ( ( G o. F ) |` ( ~P A \ { A } ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) <-> B = ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
142 |
136 141
|
mpbid |
|- ( ( ph /\ B C. A ) -> B = ( `' ( W ` B ) " { ( H ` B ) } ) ) |
143 |
142
|
ex |
|- ( ph -> ( B C. A -> B = ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
144 |
143
|
necon3ad |
|- ( ph -> ( B =/= ( `' ( W ` B ) " { ( H ` B ) } ) -> -. B C. A ) ) |
145 |
88 144
|
mpd |
|- ( ph -> -. B C. A ) |
146 |
|
npss |
|- ( -. B C. A <-> ( B C_ A -> B = A ) ) |
147 |
145 146
|
sylib |
|- ( ph -> ( B C_ A -> B = A ) ) |
148 |
85 147
|
mpd |
|- ( ph -> B = A ) |
149 |
|
eqid |
|- B = B |
150 |
|
eqid |
|- ( W ` B ) = ( W ` B ) |
151 |
149 150
|
pm3.2i |
|- ( B = B /\ ( W ` B ) = ( W ` B ) ) |
152 |
|
elinel1 |
|- ( x e. ( ~P A i^i dom card ) -> x e. ~P A ) |
153 |
|
ffvelrn |
|- ( ( H : ~P A --> A /\ x e. ~P A ) -> ( H ` x ) e. A ) |
154 |
79 152 153
|
syl2an |
|- ( ( ph /\ x e. ( ~P A i^i dom card ) ) -> ( H ` x ) e. A ) |
155 |
5 9 154 6
|
fpwwe |
|- ( ph -> ( ( B W ( W ` B ) /\ ( H ` B ) e. B ) <-> ( B = B /\ ( W ` B ) = ( W ` B ) ) ) ) |
156 |
151 155
|
mpbiri |
|- ( ph -> ( B W ( W ` B ) /\ ( H ` B ) e. B ) ) |
157 |
156
|
simpld |
|- ( ph -> B W ( W ` B ) ) |
158 |
5 9
|
fpwwelem |
|- ( ph -> ( B W ( W ` B ) <-> ( ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) /\ ( ( W ` B ) We B /\ A. y e. B ( H ` ( `' ( W ` B ) " { y } ) ) = y ) ) ) ) |
159 |
157 158
|
mpbid |
|- ( ph -> ( ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) /\ ( ( W ` B ) We B /\ A. y e. B ( H ` ( `' ( W ` B ) " { y } ) ) = y ) ) ) |
160 |
159
|
simprld |
|- ( ph -> ( W ` B ) We B ) |
161 |
|
fvex |
|- ( W ` B ) e. _V |
162 |
|
weeq1 |
|- ( r = ( W ` B ) -> ( r We B <-> ( W ` B ) We B ) ) |
163 |
161 162
|
spcev |
|- ( ( W ` B ) We B -> E. r r We B ) |
164 |
160 163
|
syl |
|- ( ph -> E. r r We B ) |
165 |
|
ween |
|- ( B e. dom card <-> E. r r We B ) |
166 |
164 165
|
sylibr |
|- ( ph -> B e. dom card ) |
167 |
148 166
|
eqeltrrd |
|- ( ph -> A e. dom card ) |
168 |
|
domtri2 |
|- ( ( _om e. dom card /\ A e. dom card ) -> ( _om ~<_ A <-> -. A ~< _om ) ) |
169 |
23 167 168
|
sylancr |
|- ( ph -> ( _om ~<_ A <-> -. A ~< _om ) ) |
170 |
|
infdju1 |
|- ( _om ~<_ A -> ( A |_| 1o ) ~~ A ) |
171 |
169 170
|
syl6bir |
|- ( ph -> ( -. A ~< _om -> ( A |_| 1o ) ~~ A ) ) |
172 |
|
ensym |
|- ( ( A |_| 1o ) ~~ A -> A ~~ ( A |_| 1o ) ) |
173 |
171 172
|
syl6 |
|- ( ph -> ( -. A ~< _om -> A ~~ ( A |_| 1o ) ) ) |
174 |
20 173
|
mt3d |
|- ( ph -> A ~< _om ) |
175 |
|
2onn |
|- 2o e. _om |
176 |
|
nnsdom |
|- ( 2o e. _om -> 2o ~< _om ) |
177 |
175 176
|
ax-mp |
|- 2o ~< _om |
178 |
|
djufi |
|- ( ( A ~< _om /\ 2o ~< _om ) -> ( A |_| 2o ) ~< _om ) |
179 |
174 177 178
|
sylancl |
|- ( ph -> ( A |_| 2o ) ~< _om ) |
180 |
|
isfinite |
|- ( ( A |_| 2o ) e. Fin <-> ( A |_| 2o ) ~< _om ) |
181 |
179 180
|
sylibr |
|- ( ph -> ( A |_| 2o ) e. Fin ) |
182 |
|
sssucid |
|- 1o C_ suc 1o |
183 |
|
df-2o |
|- 2o = suc 1o |
184 |
182 183
|
sseqtrri |
|- 1o C_ 2o |
185 |
|
xpss2 |
|- ( 1o C_ 2o -> ( { 1o } X. 1o ) C_ ( { 1o } X. 2o ) ) |
186 |
184 185
|
ax-mp |
|- ( { 1o } X. 1o ) C_ ( { 1o } X. 2o ) |
187 |
|
unss2 |
|- ( ( { 1o } X. 1o ) C_ ( { 1o } X. 2o ) -> ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) C_ ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) ) |
188 |
186 187
|
mp1i |
|- ( ph -> ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) C_ ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) ) |
189 |
|
ssun2 |
|- ( { 1o } X. 2o ) C_ ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) |
190 |
|
1oex |
|- 1o e. _V |
191 |
190
|
snid |
|- 1o e. { 1o } |
192 |
190
|
sucid |
|- 1o e. suc 1o |
193 |
192 183
|
eleqtrri |
|- 1o e. 2o |
194 |
|
opelxpi |
|- ( ( 1o e. { 1o } /\ 1o e. 2o ) -> <. 1o , 1o >. e. ( { 1o } X. 2o ) ) |
195 |
191 193 194
|
mp2an |
|- <. 1o , 1o >. e. ( { 1o } X. 2o ) |
196 |
189 195
|
sselii |
|- <. 1o , 1o >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) |
197 |
|
1n0 |
|- 1o =/= (/) |
198 |
197
|
neii |
|- -. 1o = (/) |
199 |
|
opelxp1 |
|- ( <. 1o , 1o >. e. ( { (/) } X. A ) -> 1o e. { (/) } ) |
200 |
|
elsni |
|- ( 1o e. { (/) } -> 1o = (/) ) |
201 |
199 200
|
syl |
|- ( <. 1o , 1o >. e. ( { (/) } X. A ) -> 1o = (/) ) |
202 |
198 201
|
mto |
|- -. <. 1o , 1o >. e. ( { (/) } X. A ) |
203 |
|
1onn |
|- 1o e. _om |
204 |
|
nnord |
|- ( 1o e. _om -> Ord 1o ) |
205 |
|
ordirr |
|- ( Ord 1o -> -. 1o e. 1o ) |
206 |
203 204 205
|
mp2b |
|- -. 1o e. 1o |
207 |
|
opelxp2 |
|- ( <. 1o , 1o >. e. ( { 1o } X. 1o ) -> 1o e. 1o ) |
208 |
206 207
|
mto |
|- -. <. 1o , 1o >. e. ( { 1o } X. 1o ) |
209 |
202 208
|
pm3.2ni |
|- -. ( <. 1o , 1o >. e. ( { (/) } X. A ) \/ <. 1o , 1o >. e. ( { 1o } X. 1o ) ) |
210 |
|
elun |
|- ( <. 1o , 1o >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) <-> ( <. 1o , 1o >. e. ( { (/) } X. A ) \/ <. 1o , 1o >. e. ( { 1o } X. 1o ) ) ) |
211 |
209 210
|
mtbir |
|- -. <. 1o , 1o >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
212 |
|
ssnelpss |
|- ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) C_ ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) -> ( ( <. 1o , 1o >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) /\ -. <. 1o , 1o >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) C. ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) ) ) |
213 |
196 211 212
|
mp2ani |
|- ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) C_ ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) C. ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) ) |
214 |
188 213
|
syl |
|- ( ph -> ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) C. ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) ) |
215 |
|
df-dju |
|- ( A |_| 1o ) = ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
216 |
|
df-dju |
|- ( A |_| 2o ) = ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) |
217 |
215 216
|
psseq12i |
|- ( ( A |_| 1o ) C. ( A |_| 2o ) <-> ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) C. ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) ) |
218 |
214 217
|
sylibr |
|- ( ph -> ( A |_| 1o ) C. ( A |_| 2o ) ) |
219 |
|
php3 |
|- ( ( ( A |_| 2o ) e. Fin /\ ( A |_| 1o ) C. ( A |_| 2o ) ) -> ( A |_| 1o ) ~< ( A |_| 2o ) ) |
220 |
181 218 219
|
syl2anc |
|- ( ph -> ( A |_| 1o ) ~< ( A |_| 2o ) ) |
221 |
|
canthp1lem1 |
|- ( 1o ~< A -> ( A |_| 2o ) ~<_ ~P A ) |
222 |
1 221
|
syl |
|- ( ph -> ( A |_| 2o ) ~<_ ~P A ) |
223 |
|
sdomdomtr |
|- ( ( ( A |_| 1o ) ~< ( A |_| 2o ) /\ ( A |_| 2o ) ~<_ ~P A ) -> ( A |_| 1o ) ~< ~P A ) |
224 |
220 222 223
|
syl2anc |
|- ( ph -> ( A |_| 1o ) ~< ~P A ) |
225 |
|
sdomnen |
|- ( ( A |_| 1o ) ~< ~P A -> -. ( A |_| 1o ) ~~ ~P A ) |
226 |
224 225
|
syl |
|- ( ph -> -. ( A |_| 1o ) ~~ ~P A ) |
227 |
13 226
|
pm2.65i |
|- -. ph |