Step |
Hyp |
Ref |
Expression |
1 |
|
canthp1lem2.1 |
⊢ ( 𝜑 → 1o ≺ 𝐴 ) |
2 |
|
canthp1lem2.2 |
⊢ ( 𝜑 → 𝐹 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) |
3 |
|
canthp1lem2.3 |
⊢ ( 𝜑 → 𝐺 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝐹 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) |
4 |
|
canthp1lem2.4 |
⊢ 𝐻 = ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) |
5 |
|
canthp1lem2.5 |
⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐻 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } |
6 |
|
canthp1lem2.6 |
⊢ 𝐵 = ∪ dom 𝑊 |
7 |
|
relsdom |
⊢ Rel ≺ |
8 |
7
|
brrelex2i |
⊢ ( 1o ≺ 𝐴 → 𝐴 ∈ V ) |
9 |
1 8
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
10 |
9
|
pwexd |
⊢ ( 𝜑 → 𝒫 𝐴 ∈ V ) |
11 |
|
f1oeng |
⊢ ( ( 𝒫 𝐴 ∈ V ∧ 𝐹 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) → 𝒫 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
12 |
10 2 11
|
syl2anc |
⊢ ( 𝜑 → 𝒫 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
13 |
12
|
ensymd |
⊢ ( 𝜑 → ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) |
14 |
|
canth2g |
⊢ ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴 ) |
15 |
9 14
|
syl |
⊢ ( 𝜑 → 𝐴 ≺ 𝒫 𝐴 ) |
16 |
|
sdomen2 |
⊢ ( 𝒫 𝐴 ≈ ( 𝐴 ⊔ 1o ) → ( 𝐴 ≺ 𝒫 𝐴 ↔ 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) ) |
17 |
12 16
|
syl |
⊢ ( 𝜑 → ( 𝐴 ≺ 𝒫 𝐴 ↔ 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) ) |
18 |
15 17
|
mpbid |
⊢ ( 𝜑 → 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) |
19 |
|
sdomnen |
⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
21 |
|
omelon |
⊢ ω ∈ On |
22 |
|
onenon |
⊢ ( ω ∈ On → ω ∈ dom card ) |
23 |
21 22
|
ax-mp |
⊢ ω ∈ dom card |
24 |
|
dff1o3 |
⊢ ( 𝐹 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ↔ ( 𝐹 : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ∧ Fun ◡ 𝐹 ) ) |
25 |
24
|
simprbi |
⊢ ( 𝐹 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) → Fun ◡ 𝐹 ) |
26 |
2 25
|
syl |
⊢ ( 𝜑 → Fun ◡ 𝐹 ) |
27 |
|
f1ofo |
⊢ ( 𝐹 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) → 𝐹 : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ) |
28 |
2 27
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ) |
29 |
|
f1ofn |
⊢ ( 𝐹 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) → 𝐹 Fn 𝒫 𝐴 ) |
30 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝒫 𝐴 → ( 𝐹 ↾ 𝒫 𝐴 ) = 𝐹 ) |
31 |
|
foeq1 |
⊢ ( ( 𝐹 ↾ 𝒫 𝐴 ) = 𝐹 → ( ( 𝐹 ↾ 𝒫 𝐴 ) : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ↔ 𝐹 : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ) ) |
32 |
2 29 30 31
|
4syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝒫 𝐴 ) : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ↔ 𝐹 : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ) ) |
33 |
28 32
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝒫 𝐴 ) : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ) |
34 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
35 |
|
f1osng |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝐹 ‘ 𝐴 ) ∈ V ) → { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } : { 𝐴 } –1-1-onto→ { ( 𝐹 ‘ 𝐴 ) } ) |
36 |
9 34 35
|
sylancl |
⊢ ( 𝜑 → { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } : { 𝐴 } –1-1-onto→ { ( 𝐹 ‘ 𝐴 ) } ) |
37 |
2 29
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝒫 𝐴 ) |
38 |
|
pwidg |
⊢ ( 𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴 ) |
39 |
9 38
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 𝐴 ) |
40 |
|
fnressn |
⊢ ( ( 𝐹 Fn 𝒫 𝐴 ∧ 𝐴 ∈ 𝒫 𝐴 ) → ( 𝐹 ↾ { 𝐴 } ) = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |
41 |
37 39 40
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ { 𝐴 } ) = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |
42 |
41
|
f1oeq1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ { 𝐴 } ) : { 𝐴 } –1-1-onto→ { ( 𝐹 ‘ 𝐴 ) } ↔ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } : { 𝐴 } –1-1-onto→ { ( 𝐹 ‘ 𝐴 ) } ) ) |
43 |
36 42
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ↾ { 𝐴 } ) : { 𝐴 } –1-1-onto→ { ( 𝐹 ‘ 𝐴 ) } ) |
44 |
|
f1ofo |
⊢ ( ( 𝐹 ↾ { 𝐴 } ) : { 𝐴 } –1-1-onto→ { ( 𝐹 ‘ 𝐴 ) } → ( 𝐹 ↾ { 𝐴 } ) : { 𝐴 } –onto→ { ( 𝐹 ‘ 𝐴 ) } ) |
45 |
43 44
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ { 𝐴 } ) : { 𝐴 } –onto→ { ( 𝐹 ‘ 𝐴 ) } ) |
46 |
|
resdif |
⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝒫 𝐴 ) : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ∧ ( 𝐹 ↾ { 𝐴 } ) : { 𝐴 } –onto→ { ( 𝐹 ‘ 𝐴 ) } ) → ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝐹 ‘ 𝐴 ) } ) ) |
47 |
26 33 45 46
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝐹 ‘ 𝐴 ) } ) ) |
48 |
|
f1oco |
⊢ ( ( 𝐺 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝐹 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ∧ ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝐹 ‘ 𝐴 ) } ) ) → ( 𝐺 ∘ ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 ) |
49 |
3 47 48
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 ) |
50 |
|
resco |
⊢ ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) = ( 𝐺 ∘ ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ) |
51 |
|
f1oeq1 |
⊢ ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) = ( 𝐺 ∘ ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ) → ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 ↔ ( 𝐺 ∘ ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 ) ) |
52 |
50 51
|
ax-mp |
⊢ ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 ↔ ( 𝐺 ∘ ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 ) |
53 |
49 52
|
sylibr |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 ) |
54 |
|
f1of |
⊢ ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 → ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) ⟶ 𝐴 ) |
55 |
53 54
|
syl |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) ⟶ 𝐴 ) |
56 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝐴 |
57 |
56
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) ∧ 𝑥 = 𝐴 ) → ∅ ∈ 𝒫 𝐴 ) |
58 |
|
sdom0 |
⊢ ¬ 1o ≺ ∅ |
59 |
|
breq2 |
⊢ ( ∅ = 𝐴 → ( 1o ≺ ∅ ↔ 1o ≺ 𝐴 ) ) |
60 |
58 59
|
mtbii |
⊢ ( ∅ = 𝐴 → ¬ 1o ≺ 𝐴 ) |
61 |
60
|
necon2ai |
⊢ ( 1o ≺ 𝐴 → ∅ ≠ 𝐴 ) |
62 |
1 61
|
syl |
⊢ ( 𝜑 → ∅ ≠ 𝐴 ) |
63 |
62
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) ∧ 𝑥 = 𝐴 ) → ∅ ≠ 𝐴 ) |
64 |
|
eldifsn |
⊢ ( ∅ ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ↔ ( ∅ ∈ 𝒫 𝐴 ∧ ∅ ≠ 𝐴 ) ) |
65 |
57 63 64
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) ∧ 𝑥 = 𝐴 ) → ∅ ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) |
66 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) ∧ ¬ 𝑥 = 𝐴 ) → 𝑥 ∈ 𝒫 𝐴 ) |
67 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) ∧ ¬ 𝑥 = 𝐴 ) → ¬ 𝑥 = 𝐴 ) |
68 |
67
|
neqned |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) ∧ ¬ 𝑥 = 𝐴 ) → 𝑥 ≠ 𝐴 ) |
69 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ 𝐴 ) ) |
70 |
66 68 69
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) ∧ ¬ 𝑥 = 𝐴 ) → 𝑥 ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) |
71 |
65 70
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) → if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) |
72 |
71
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) : 𝒫 𝐴 ⟶ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) |
73 |
55 72
|
fcod |
⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) : 𝒫 𝐴 ⟶ 𝐴 ) |
74 |
72
|
frnd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ⊆ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) |
75 |
|
cores |
⊢ ( ran ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ⊆ ( 𝒫 𝐴 ∖ { 𝐴 } ) → ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) = ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) ) |
76 |
74 75
|
syl |
⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) = ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) ) |
77 |
76 4
|
eqtr4di |
⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) = 𝐻 ) |
78 |
77
|
feq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) : 𝒫 𝐴 ⟶ 𝐴 ↔ 𝐻 : 𝒫 𝐴 ⟶ 𝐴 ) ) |
79 |
73 78
|
mpbid |
⊢ ( 𝜑 → 𝐻 : 𝒫 𝐴 ⟶ 𝐴 ) |
80 |
|
inss1 |
⊢ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝒫 𝐴 |
81 |
80
|
a1i |
⊢ ( 𝜑 → ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝒫 𝐴 ) |
82 |
|
eqid |
⊢ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) |
83 |
5 6 82
|
canth4 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐻 : 𝒫 𝐴 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝒫 𝐴 ) → ( 𝐵 ⊆ 𝐴 ∧ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ⊊ 𝐵 ∧ ( 𝐻 ‘ 𝐵 ) = ( 𝐻 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) ) |
84 |
9 79 81 83
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 ⊆ 𝐴 ∧ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ⊊ 𝐵 ∧ ( 𝐻 ‘ 𝐵 ) = ( 𝐻 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) ) |
85 |
84
|
simp1d |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
86 |
84
|
simp2d |
⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ⊊ 𝐵 ) |
87 |
86
|
pssned |
⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ≠ 𝐵 ) |
88 |
87
|
necomd |
⊢ ( 𝜑 → 𝐵 ≠ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) |
89 |
84
|
simp3d |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝐵 ) = ( 𝐻 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
90 |
4
|
fveq1i |
⊢ ( 𝐻 ‘ 𝐵 ) = ( ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) ‘ 𝐵 ) |
91 |
4
|
fveq1i |
⊢ ( 𝐻 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) = ( ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) |
92 |
89 90 91
|
3eqtr3g |
⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) ‘ 𝐵 ) = ( ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
93 |
9 85
|
sselpwd |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 𝐴 ) |
94 |
72 93
|
fvco3d |
⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) ‘ 𝐵 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ 𝐵 ) ) ) |
95 |
86
|
pssssd |
⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ⊆ 𝐵 ) |
96 |
95 85
|
sstrd |
⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ⊆ 𝐴 ) |
97 |
9 96
|
sselpwd |
⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ∈ 𝒫 𝐴 ) |
98 |
72 97
|
fvco3d |
⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) ) |
99 |
92 94 98
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ‘ ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ 𝐵 ) ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) ) |
100 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ 𝐵 ) ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) ) |
101 |
|
eqid |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) = ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) |
102 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝐴 ↔ 𝐵 = 𝐴 ) ) |
103 |
|
id |
⊢ ( 𝑥 = 𝐵 → 𝑥 = 𝐵 ) |
104 |
102 103
|
ifbieq2d |
⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) = if ( 𝐵 = 𝐴 , ∅ , 𝐵 ) ) |
105 |
|
ifcl |
⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝐵 ∈ 𝒫 𝐴 ) → if ( 𝐵 = 𝐴 , ∅ , 𝐵 ) ∈ 𝒫 𝐴 ) |
106 |
56 93 105
|
sylancr |
⊢ ( 𝜑 → if ( 𝐵 = 𝐴 , ∅ , 𝐵 ) ∈ 𝒫 𝐴 ) |
107 |
101 104 93 106
|
fvmptd3 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ 𝐵 ) = if ( 𝐵 = 𝐴 , ∅ , 𝐵 ) ) |
108 |
|
pssne |
⊢ ( 𝐵 ⊊ 𝐴 → 𝐵 ≠ 𝐴 ) |
109 |
108
|
neneqd |
⊢ ( 𝐵 ⊊ 𝐴 → ¬ 𝐵 = 𝐴 ) |
110 |
109
|
iffalsed |
⊢ ( 𝐵 ⊊ 𝐴 → if ( 𝐵 = 𝐴 , ∅ , 𝐵 ) = 𝐵 ) |
111 |
107 110
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ 𝐵 ) = 𝐵 ) |
112 |
111
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ 𝐵 ) ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐵 ) ) |
113 |
|
eqeq1 |
⊢ ( 𝑥 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) → ( 𝑥 = 𝐴 ↔ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = 𝐴 ) ) |
114 |
|
id |
⊢ ( 𝑥 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) → 𝑥 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) |
115 |
113 114
|
ifbieq2d |
⊢ ( 𝑥 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) → if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) = if ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = 𝐴 , ∅ , ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
116 |
|
ifcl |
⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ∈ 𝒫 𝐴 ) → if ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = 𝐴 , ∅ , ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ∈ 𝒫 𝐴 ) |
117 |
56 97 116
|
sylancr |
⊢ ( 𝜑 → if ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = 𝐴 , ∅ , ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ∈ 𝒫 𝐴 ) |
118 |
101 115 97 117
|
fvmptd3 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) = if ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = 𝐴 , ∅ , ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
119 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) = if ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = 𝐴 , ∅ , ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
120 |
|
sspsstr |
⊢ ( ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐴 ) → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ⊊ 𝐴 ) |
121 |
95 120
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ⊊ 𝐴 ) |
122 |
121
|
pssned |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ≠ 𝐴 ) |
123 |
122
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ¬ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = 𝐴 ) |
124 |
123
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → if ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = 𝐴 , ∅ , ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) |
125 |
119 124
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) |
126 |
125
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
127 |
100 112 126
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐵 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
128 |
93 108
|
anim12i |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( 𝐵 ∈ 𝒫 𝐴 ∧ 𝐵 ≠ 𝐴 ) ) |
129 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ↔ ( 𝐵 ∈ 𝒫 𝐴 ∧ 𝐵 ≠ 𝐴 ) ) |
130 |
128 129
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) |
131 |
130
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ‘ 𝐵 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐵 ) ) |
132 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ∈ 𝒫 𝐴 ) |
133 |
|
eldifsn |
⊢ ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ↔ ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ∈ 𝒫 𝐴 ∧ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ≠ 𝐴 ) ) |
134 |
132 122 133
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) |
135 |
134
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
136 |
127 131 135
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ‘ 𝐵 ) = ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
137 |
|
f1of1 |
⊢ ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 → ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1→ 𝐴 ) |
138 |
53 137
|
syl |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1→ 𝐴 ) |
139 |
138
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1→ 𝐴 ) |
140 |
|
f1fveq |
⊢ ( ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1→ 𝐴 ∧ ( 𝐵 ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ∧ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ‘ 𝐵 ) = ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ↔ 𝐵 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
141 |
139 130 134 140
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ‘ 𝐵 ) = ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ↔ 𝐵 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
142 |
136 141
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) |
143 |
142
|
ex |
⊢ ( 𝜑 → ( 𝐵 ⊊ 𝐴 → 𝐵 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
144 |
143
|
necon3ad |
⊢ ( 𝜑 → ( 𝐵 ≠ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) → ¬ 𝐵 ⊊ 𝐴 ) ) |
145 |
88 144
|
mpd |
⊢ ( 𝜑 → ¬ 𝐵 ⊊ 𝐴 ) |
146 |
|
npss |
⊢ ( ¬ 𝐵 ⊊ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 → 𝐵 = 𝐴 ) ) |
147 |
145 146
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ⊆ 𝐴 → 𝐵 = 𝐴 ) ) |
148 |
85 147
|
mpd |
⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
149 |
|
eqid |
⊢ 𝐵 = 𝐵 |
150 |
|
eqid |
⊢ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) |
151 |
149 150
|
pm3.2i |
⊢ ( 𝐵 = 𝐵 ∧ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) ) |
152 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ dom card ) → 𝑥 ∈ 𝒫 𝐴 ) |
153 |
|
ffvelrn |
⊢ ( ( 𝐻 : 𝒫 𝐴 ⟶ 𝐴 ∧ 𝑥 ∈ 𝒫 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐴 ) |
154 |
79 152 153
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ dom card ) ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐴 ) |
155 |
5 9 154 6
|
fpwwe |
⊢ ( 𝜑 → ( ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ∧ ( 𝐻 ‘ 𝐵 ) ∈ 𝐵 ) ↔ ( 𝐵 = 𝐵 ∧ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) ) ) ) |
156 |
151 155
|
mpbiri |
⊢ ( 𝜑 → ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ∧ ( 𝐻 ‘ 𝐵 ) ∈ 𝐵 ) ) |
157 |
156
|
simpld |
⊢ ( 𝜑 → 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ) |
158 |
5 9
|
fpwwelem |
⊢ ( 𝜑 → ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐻 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) ) = 𝑦 ) ) ) ) |
159 |
157 158
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐻 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) ) = 𝑦 ) ) ) |
160 |
159
|
simprld |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝐵 ) We 𝐵 ) |
161 |
|
fvex |
⊢ ( 𝑊 ‘ 𝐵 ) ∈ V |
162 |
|
weeq1 |
⊢ ( 𝑟 = ( 𝑊 ‘ 𝐵 ) → ( 𝑟 We 𝐵 ↔ ( 𝑊 ‘ 𝐵 ) We 𝐵 ) ) |
163 |
161 162
|
spcev |
⊢ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 → ∃ 𝑟 𝑟 We 𝐵 ) |
164 |
160 163
|
syl |
⊢ ( 𝜑 → ∃ 𝑟 𝑟 We 𝐵 ) |
165 |
|
ween |
⊢ ( 𝐵 ∈ dom card ↔ ∃ 𝑟 𝑟 We 𝐵 ) |
166 |
164 165
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ dom card ) |
167 |
148 166
|
eqeltrrd |
⊢ ( 𝜑 → 𝐴 ∈ dom card ) |
168 |
|
domtri2 |
⊢ ( ( ω ∈ dom card ∧ 𝐴 ∈ dom card ) → ( ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω ) ) |
169 |
23 167 168
|
sylancr |
⊢ ( 𝜑 → ( ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω ) ) |
170 |
|
infdju1 |
⊢ ( ω ≼ 𝐴 → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) |
171 |
169 170
|
syl6bir |
⊢ ( 𝜑 → ( ¬ 𝐴 ≺ ω → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) ) |
172 |
|
ensym |
⊢ ( ( 𝐴 ⊔ 1o ) ≈ 𝐴 → 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
173 |
171 172
|
syl6 |
⊢ ( 𝜑 → ( ¬ 𝐴 ≺ ω → 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) ) |
174 |
20 173
|
mt3d |
⊢ ( 𝜑 → 𝐴 ≺ ω ) |
175 |
|
2onn |
⊢ 2o ∈ ω |
176 |
|
nnsdom |
⊢ ( 2o ∈ ω → 2o ≺ ω ) |
177 |
175 176
|
ax-mp |
⊢ 2o ≺ ω |
178 |
|
djufi |
⊢ ( ( 𝐴 ≺ ω ∧ 2o ≺ ω ) → ( 𝐴 ⊔ 2o ) ≺ ω ) |
179 |
174 177 178
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ⊔ 2o ) ≺ ω ) |
180 |
|
isfinite |
⊢ ( ( 𝐴 ⊔ 2o ) ∈ Fin ↔ ( 𝐴 ⊔ 2o ) ≺ ω ) |
181 |
179 180
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ⊔ 2o ) ∈ Fin ) |
182 |
|
sssucid |
⊢ 1o ⊆ suc 1o |
183 |
|
df-2o |
⊢ 2o = suc 1o |
184 |
182 183
|
sseqtrri |
⊢ 1o ⊆ 2o |
185 |
|
xpss2 |
⊢ ( 1o ⊆ 2o → ( { 1o } × 1o ) ⊆ ( { 1o } × 2o ) ) |
186 |
184 185
|
ax-mp |
⊢ ( { 1o } × 1o ) ⊆ ( { 1o } × 2o ) |
187 |
|
unss2 |
⊢ ( ( { 1o } × 1o ) ⊆ ( { 1o } × 2o ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) ) |
188 |
186 187
|
mp1i |
⊢ ( 𝜑 → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) ) |
189 |
|
ssun2 |
⊢ ( { 1o } × 2o ) ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) |
190 |
|
1oex |
⊢ 1o ∈ V |
191 |
190
|
snid |
⊢ 1o ∈ { 1o } |
192 |
190
|
sucid |
⊢ 1o ∈ suc 1o |
193 |
192 183
|
eleqtrri |
⊢ 1o ∈ 2o |
194 |
|
opelxpi |
⊢ ( ( 1o ∈ { 1o } ∧ 1o ∈ 2o ) → 〈 1o , 1o 〉 ∈ ( { 1o } × 2o ) ) |
195 |
191 193 194
|
mp2an |
⊢ 〈 1o , 1o 〉 ∈ ( { 1o } × 2o ) |
196 |
189 195
|
sselii |
⊢ 〈 1o , 1o 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) |
197 |
|
1n0 |
⊢ 1o ≠ ∅ |
198 |
197
|
neii |
⊢ ¬ 1o = ∅ |
199 |
|
opelxp1 |
⊢ ( 〈 1o , 1o 〉 ∈ ( { ∅ } × 𝐴 ) → 1o ∈ { ∅ } ) |
200 |
|
elsni |
⊢ ( 1o ∈ { ∅ } → 1o = ∅ ) |
201 |
199 200
|
syl |
⊢ ( 〈 1o , 1o 〉 ∈ ( { ∅ } × 𝐴 ) → 1o = ∅ ) |
202 |
198 201
|
mto |
⊢ ¬ 〈 1o , 1o 〉 ∈ ( { ∅ } × 𝐴 ) |
203 |
|
1onn |
⊢ 1o ∈ ω |
204 |
|
nnord |
⊢ ( 1o ∈ ω → Ord 1o ) |
205 |
|
ordirr |
⊢ ( Ord 1o → ¬ 1o ∈ 1o ) |
206 |
203 204 205
|
mp2b |
⊢ ¬ 1o ∈ 1o |
207 |
|
opelxp2 |
⊢ ( 〈 1o , 1o 〉 ∈ ( { 1o } × 1o ) → 1o ∈ 1o ) |
208 |
206 207
|
mto |
⊢ ¬ 〈 1o , 1o 〉 ∈ ( { 1o } × 1o ) |
209 |
202 208
|
pm3.2ni |
⊢ ¬ ( 〈 1o , 1o 〉 ∈ ( { ∅ } × 𝐴 ) ∨ 〈 1o , 1o 〉 ∈ ( { 1o } × 1o ) ) |
210 |
|
elun |
⊢ ( 〈 1o , 1o 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ↔ ( 〈 1o , 1o 〉 ∈ ( { ∅ } × 𝐴 ) ∨ 〈 1o , 1o 〉 ∈ ( { 1o } × 1o ) ) ) |
211 |
209 210
|
mtbir |
⊢ ¬ 〈 1o , 1o 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) |
212 |
|
ssnelpss |
⊢ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) → ( ( 〈 1o , 1o 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) ∧ ¬ 〈 1o , 1o 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ⊊ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) ) ) |
213 |
196 211 212
|
mp2ani |
⊢ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ⊊ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) ) |
214 |
188 213
|
syl |
⊢ ( 𝜑 → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ⊊ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) ) |
215 |
|
df-dju |
⊢ ( 𝐴 ⊔ 1o ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) |
216 |
|
df-dju |
⊢ ( 𝐴 ⊔ 2o ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) |
217 |
215 216
|
psseq12i |
⊢ ( ( 𝐴 ⊔ 1o ) ⊊ ( 𝐴 ⊔ 2o ) ↔ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ⊊ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) ) |
218 |
214 217
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ⊔ 1o ) ⊊ ( 𝐴 ⊔ 2o ) ) |
219 |
|
php3 |
⊢ ( ( ( 𝐴 ⊔ 2o ) ∈ Fin ∧ ( 𝐴 ⊔ 1o ) ⊊ ( 𝐴 ⊔ 2o ) ) → ( 𝐴 ⊔ 1o ) ≺ ( 𝐴 ⊔ 2o ) ) |
220 |
181 218 219
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ⊔ 1o ) ≺ ( 𝐴 ⊔ 2o ) ) |
221 |
|
canthp1lem1 |
⊢ ( 1o ≺ 𝐴 → ( 𝐴 ⊔ 2o ) ≼ 𝒫 𝐴 ) |
222 |
1 221
|
syl |
⊢ ( 𝜑 → ( 𝐴 ⊔ 2o ) ≼ 𝒫 𝐴 ) |
223 |
|
sdomdomtr |
⊢ ( ( ( 𝐴 ⊔ 1o ) ≺ ( 𝐴 ⊔ 2o ) ∧ ( 𝐴 ⊔ 2o ) ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 ) |
224 |
220 222 223
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 ) |
225 |
|
sdomnen |
⊢ ( ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 → ¬ ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) |
226 |
224 225
|
syl |
⊢ ( 𝜑 → ¬ ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) |
227 |
13 226
|
pm2.65i |
⊢ ¬ 𝜑 |