Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe.1 |
⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } |
2 |
|
fpwwe.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
1
|
relopabi |
⊢ Rel 𝑊 |
4 |
3
|
a1i |
⊢ ( 𝜑 → Rel 𝑊 ) |
5 |
|
brrelex12 |
⊢ ( ( Rel 𝑊 ∧ 𝑋 𝑊 𝑅 ) → ( 𝑋 ∈ V ∧ 𝑅 ∈ V ) ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑋 𝑊 𝑅 ) → ( 𝑋 ∈ V ∧ 𝑅 ∈ V ) ) |
7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) → 𝐴 ∈ 𝑉 ) |
8 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) → 𝑋 ⊆ 𝐴 ) |
9 |
7 8
|
ssexd |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) → 𝑋 ∈ V ) |
10 |
9 9
|
xpexd |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) → ( 𝑋 × 𝑋 ) ∈ V ) |
11 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) → 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) |
12 |
10 11
|
ssexd |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) → 𝑅 ∈ V ) |
13 |
9 12
|
jca |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) → ( 𝑋 ∈ V ∧ 𝑅 ∈ V ) ) |
14 |
|
simpl |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → 𝑥 = 𝑋 ) |
15 |
14
|
sseq1d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴 ) ) |
16 |
|
simpr |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) |
17 |
14
|
sqxpeqd |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( 𝑥 × 𝑥 ) = ( 𝑋 × 𝑋 ) ) |
18 |
16 17
|
sseq12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ) |
19 |
15 18
|
anbi12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ↔ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ) ) |
20 |
|
weeq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑟 We 𝑥 ↔ 𝑟 We 𝑋 ) ) |
21 |
|
weeq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 We 𝑋 ↔ 𝑅 We 𝑋 ) ) |
22 |
20 21
|
sylan9bb |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( 𝑟 We 𝑥 ↔ 𝑅 We 𝑋 ) ) |
23 |
16
|
cnveqd |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ◡ 𝑟 = ◡ 𝑅 ) |
24 |
23
|
imaeq1d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( ◡ 𝑟 “ { 𝑦 } ) = ( ◡ 𝑅 “ { 𝑦 } ) ) |
25 |
24
|
fveqeq2d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( ( 𝐹 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ↔ ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) |
26 |
14 25
|
raleqbidv |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) |
27 |
22 26
|
anbi12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ↔ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) |
28 |
19 27
|
anbi12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) ) |
29 |
28 1
|
brabga |
⊢ ( ( 𝑋 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑋 𝑊 𝑅 ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) ) |
30 |
6 13 29
|
pm5.21nd |
⊢ ( 𝜑 → ( 𝑋 𝑊 𝑅 ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) ) |