Metamath Proof Explorer


Theorem fpwwelem

Description: Lemma for fpwwe . (Contributed by Mario Carneiro, 15-May-2015) (Revised by AV, 20-Jul-2024)

Ref Expression
Hypotheses fpwwe.1 W=xr|xArx×xrWexyxFr-1y=y
fpwwe.2 φAV
Assertion fpwwelem φXWRXARX×XRWeXyXFR-1y=y

Proof

Step Hyp Ref Expression
1 fpwwe.1 W=xr|xArx×xrWexyxFr-1y=y
2 fpwwe.2 φAV
3 1 relopabiv RelW
4 3 a1i φRelW
5 brrelex12 RelWXWRXVRV
6 4 5 sylan φXWRXVRV
7 2 adantr φXARX×XRWeXyXFR-1y=yAV
8 simprll φXARX×XRWeXyXFR-1y=yXA
9 7 8 ssexd φXARX×XRWeXyXFR-1y=yXV
10 9 9 xpexd φXARX×XRWeXyXFR-1y=yX×XV
11 simprlr φXARX×XRWeXyXFR-1y=yRX×X
12 10 11 ssexd φXARX×XRWeXyXFR-1y=yRV
13 9 12 jca φXARX×XRWeXyXFR-1y=yXVRV
14 simpl x=Xr=Rx=X
15 14 sseq1d x=Xr=RxAXA
16 simpr x=Xr=Rr=R
17 14 sqxpeqd x=Xr=Rx×x=X×X
18 16 17 sseq12d x=Xr=Rrx×xRX×X
19 15 18 anbi12d x=Xr=RxArx×xXARX×X
20 weeq2 x=XrWexrWeX
21 weeq1 r=RrWeXRWeX
22 20 21 sylan9bb x=Xr=RrWexRWeX
23 16 cnveqd x=Xr=Rr-1=R-1
24 23 imaeq1d x=Xr=Rr-1y=R-1y
25 24 fveqeq2d x=Xr=RFr-1y=yFR-1y=y
26 14 25 raleqbidv x=Xr=RyxFr-1y=yyXFR-1y=y
27 22 26 anbi12d x=Xr=RrWexyxFr-1y=yRWeXyXFR-1y=y
28 19 27 anbi12d x=Xr=RxArx×xrWexyxFr-1y=yXARX×XRWeXyXFR-1y=y
29 28 1 brabga XVRVXWRXARX×XRWeXyXFR-1y=y
30 6 13 29 pm5.21nd φXWRXARX×XRWeXyXFR-1y=y