| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1sdom2 | 
							⊢ 1o  ≺  2o  | 
						
						
							| 2 | 
							
								
							 | 
							sdomdom | 
							⊢ ( 1o  ≺  2o  →  1o  ≼  2o )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ax-mp | 
							⊢ 1o  ≼  2o  | 
						
						
							| 4 | 
							
								
							 | 
							relsdom | 
							⊢ Rel   ≺   | 
						
						
							| 5 | 
							
								4
							 | 
							brrelex2i | 
							⊢ ( 1o  ≺  𝐴  →  𝐴  ∈  V )  | 
						
						
							| 6 | 
							
								
							 | 
							djudom2 | 
							⊢ ( ( 1o  ≼  2o  ∧  𝐴  ∈  V )  →  ( 𝐴  ⊔  1o )  ≼  ( 𝐴  ⊔  2o ) )  | 
						
						
							| 7 | 
							
								3 5 6
							 | 
							sylancr | 
							⊢ ( 1o  ≺  𝐴  →  ( 𝐴  ⊔  1o )  ≼  ( 𝐴  ⊔  2o ) )  | 
						
						
							| 8 | 
							
								
							 | 
							canthp1lem1 | 
							⊢ ( 1o  ≺  𝐴  →  ( 𝐴  ⊔  2o )  ≼  𝒫  𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							domtr | 
							⊢ ( ( ( 𝐴  ⊔  1o )  ≼  ( 𝐴  ⊔  2o )  ∧  ( 𝐴  ⊔  2o )  ≼  𝒫  𝐴 )  →  ( 𝐴  ⊔  1o )  ≼  𝒫  𝐴 )  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							syl2anc | 
							⊢ ( 1o  ≺  𝐴  →  ( 𝐴  ⊔  1o )  ≼  𝒫  𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							fal | 
							⊢ ¬  ⊥  | 
						
						
							| 12 | 
							
								
							 | 
							ensym | 
							⊢ ( ( 𝐴  ⊔  1o )  ≈  𝒫  𝐴  →  𝒫  𝐴  ≈  ( 𝐴  ⊔  1o ) )  | 
						
						
							| 13 | 
							
								
							 | 
							bren | 
							⊢ ( 𝒫  𝐴  ≈  ( 𝐴  ⊔  1o )  ↔  ∃ 𝑓 𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							sylib | 
							⊢ ( ( 𝐴  ⊔  1o )  ≈  𝒫  𝐴  →  ∃ 𝑓 𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  | 
						
						
							| 15 | 
							
								
							 | 
							f1of | 
							⊢ ( 𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o )  →  𝑓 : 𝒫  𝐴 ⟶ ( 𝐴  ⊔  1o ) )  | 
						
						
							| 16 | 
							
								
							 | 
							pwidg | 
							⊢ ( 𝐴  ∈  V  →  𝐴  ∈  𝒫  𝐴 )  | 
						
						
							| 17 | 
							
								5 16
							 | 
							syl | 
							⊢ ( 1o  ≺  𝐴  →  𝐴  ∈  𝒫  𝐴 )  | 
						
						
							| 18 | 
							
								
							 | 
							ffvelcdm | 
							⊢ ( ( 𝑓 : 𝒫  𝐴 ⟶ ( 𝐴  ⊔  1o )  ∧  𝐴  ∈  𝒫  𝐴 )  →  ( 𝑓 ‘ 𝐴 )  ∈  ( 𝐴  ⊔  1o ) )  | 
						
						
							| 19 | 
							
								15 17 18
							 | 
							syl2anr | 
							⊢ ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  →  ( 𝑓 ‘ 𝐴 )  ∈  ( 𝐴  ⊔  1o ) )  | 
						
						
							| 20 | 
							
								
							 | 
							dju1dif | 
							⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑓 ‘ 𝐴 )  ∈  ( 𝐴  ⊔  1o ) )  →  ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ≈  𝐴 )  | 
						
						
							| 21 | 
							
								5 19 20
							 | 
							syl2an2r | 
							⊢ ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  →  ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ≈  𝐴 )  | 
						
						
							| 22 | 
							
								
							 | 
							bren | 
							⊢ ( ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ≈  𝐴  ↔  ∃ 𝑔 𝑔 : ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							sylib | 
							⊢ ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  →  ∃ 𝑔 𝑔 : ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 )  | 
						
						
							| 24 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  ∧  𝑔 : ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 )  →  1o  ≺  𝐴 )  | 
						
						
							| 25 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  ∧  𝑔 : ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 )  →  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  ∧  𝑔 : ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 )  →  𝑔 : ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 )  | 
						
						
							| 27 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑤  =  𝑥  →  ( 𝑤  =  𝐴  ↔  𝑥  =  𝐴 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							id | 
							⊢ ( 𝑤  =  𝑥  →  𝑤  =  𝑥 )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							ifbieq2d | 
							⊢ ( 𝑤  =  𝑥  →  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 )  =  if ( 𝑥  =  𝐴 ,  ∅ ,  𝑥 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							cbvmptv | 
							⊢ ( 𝑤  ∈  𝒫  𝐴  ↦  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 ) )  =  ( 𝑥  ∈  𝒫  𝐴  ↦  if ( 𝑥  =  𝐴 ,  ∅ ,  𝑥 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							coeq2i | 
							⊢ ( ( 𝑔  ∘  𝑓 )  ∘  ( 𝑤  ∈  𝒫  𝐴  ↦  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 ) ) )  =  ( ( 𝑔  ∘  𝑓 )  ∘  ( 𝑥  ∈  𝒫  𝐴  ↦  if ( 𝑥  =  𝐴 ,  ∅ ,  𝑥 ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							eqid | 
							⊢ { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 ( ( ( 𝑔  ∘  𝑓 )  ∘  ( 𝑤  ∈  𝒫  𝐴  ↦  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 ) ) ) ‘ ( ◡ 𝑠  “  { 𝑧 } ) )  =  𝑧 ) ) }  =  { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 ( ( ( 𝑔  ∘  𝑓 )  ∘  ( 𝑤  ∈  𝒫  𝐴  ↦  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 ) ) ) ‘ ( ◡ 𝑠  “  { 𝑧 } ) )  =  𝑧 ) ) }  | 
						
						
							| 33 | 
							
								32
							 | 
							fpwwecbv | 
							⊢ { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 ( ( ( 𝑔  ∘  𝑓 )  ∘  ( 𝑤  ∈  𝒫  𝐴  ↦  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 ) ) ) ‘ ( ◡ 𝑠  “  { 𝑧 } ) )  =  𝑧 ) ) }  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 ) )  ∧  ( 𝑟  We  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( ( ( 𝑔  ∘  𝑓 )  ∘  ( 𝑤  ∈  𝒫  𝐴  ↦  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 ) ) ) ‘ ( ◡ 𝑟  “  { 𝑦 } ) )  =  𝑦 ) ) }  | 
						
						
							| 34 | 
							
								
							 | 
							eqid | 
							⊢ ∪  dom  { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 ( ( ( 𝑔  ∘  𝑓 )  ∘  ( 𝑤  ∈  𝒫  𝐴  ↦  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 ) ) ) ‘ ( ◡ 𝑠  “  { 𝑧 } ) )  =  𝑧 ) ) }  =  ∪  dom  { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 ( ( ( 𝑔  ∘  𝑓 )  ∘  ( 𝑤  ∈  𝒫  𝐴  ↦  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 ) ) ) ‘ ( ◡ 𝑠  “  { 𝑧 } ) )  =  𝑧 ) ) }  | 
						
						
							| 35 | 
							
								24 25 26 31 33 34
							 | 
							canthp1lem2 | 
							⊢ ¬  ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  ∧  𝑔 : ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 )  | 
						
						
							| 36 | 
							
								35
							 | 
							pm2.21i | 
							⊢ ( ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  ∧  𝑔 : ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 )  →  ⊥ )  | 
						
						
							| 37 | 
							
								23 36
							 | 
							exlimddv | 
							⊢ ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  →  ⊥ )  | 
						
						
							| 38 | 
							
								37
							 | 
							ex | 
							⊢ ( 1o  ≺  𝐴  →  ( 𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o )  →  ⊥ ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							exlimdv | 
							⊢ ( 1o  ≺  𝐴  →  ( ∃ 𝑓 𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o )  →  ⊥ ) )  | 
						
						
							| 40 | 
							
								14 39
							 | 
							syl5 | 
							⊢ ( 1o  ≺  𝐴  →  ( ( 𝐴  ⊔  1o )  ≈  𝒫  𝐴  →  ⊥ ) )  | 
						
						
							| 41 | 
							
								11 40
							 | 
							mtoi | 
							⊢ ( 1o  ≺  𝐴  →  ¬  ( 𝐴  ⊔  1o )  ≈  𝒫  𝐴 )  | 
						
						
							| 42 | 
							
								
							 | 
							brsdom | 
							⊢ ( ( 𝐴  ⊔  1o )  ≺  𝒫  𝐴  ↔  ( ( 𝐴  ⊔  1o )  ≼  𝒫  𝐴  ∧  ¬  ( 𝐴  ⊔  1o )  ≈  𝒫  𝐴 ) )  | 
						
						
							| 43 | 
							
								10 41 42
							 | 
							sylanbrc | 
							⊢ ( 1o  ≺  𝐴  →  ( 𝐴  ⊔  1o )  ≺  𝒫  𝐴 )  |