Step |
Hyp |
Ref |
Expression |
1 |
|
1sdom2 |
⊢ 1o ≺ 2o |
2 |
|
sdomdom |
⊢ ( 1o ≺ 2o → 1o ≼ 2o ) |
3 |
1 2
|
ax-mp |
⊢ 1o ≼ 2o |
4 |
|
relsdom |
⊢ Rel ≺ |
5 |
4
|
brrelex2i |
⊢ ( 1o ≺ 𝐴 → 𝐴 ∈ V ) |
6 |
|
djudom2 |
⊢ ( ( 1o ≼ 2o ∧ 𝐴 ∈ V ) → ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 2o ) ) |
7 |
3 5 6
|
sylancr |
⊢ ( 1o ≺ 𝐴 → ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 2o ) ) |
8 |
|
canthp1lem1 |
⊢ ( 1o ≺ 𝐴 → ( 𝐴 ⊔ 2o ) ≼ 𝒫 𝐴 ) |
9 |
|
domtr |
⊢ ( ( ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 2o ) ∧ ( 𝐴 ⊔ 2o ) ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 1o ) ≼ 𝒫 𝐴 ) |
10 |
7 8 9
|
syl2anc |
⊢ ( 1o ≺ 𝐴 → ( 𝐴 ⊔ 1o ) ≼ 𝒫 𝐴 ) |
11 |
|
fal |
⊢ ¬ ⊥ |
12 |
|
ensym |
⊢ ( ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
13 |
|
bren |
⊢ ( 𝒫 𝐴 ≈ ( 𝐴 ⊔ 1o ) ↔ ∃ 𝑓 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) |
14 |
12 13
|
sylib |
⊢ ( ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 → ∃ 𝑓 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) |
15 |
|
f1of |
⊢ ( 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) → 𝑓 : 𝒫 𝐴 ⟶ ( 𝐴 ⊔ 1o ) ) |
16 |
|
pwidg |
⊢ ( 𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴 ) |
17 |
5 16
|
syl |
⊢ ( 1o ≺ 𝐴 → 𝐴 ∈ 𝒫 𝐴 ) |
18 |
|
ffvelrn |
⊢ ( ( 𝑓 : 𝒫 𝐴 ⟶ ( 𝐴 ⊔ 1o ) ∧ 𝐴 ∈ 𝒫 𝐴 ) → ( 𝑓 ‘ 𝐴 ) ∈ ( 𝐴 ⊔ 1o ) ) |
19 |
15 17 18
|
syl2anr |
⊢ ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) → ( 𝑓 ‘ 𝐴 ) ∈ ( 𝐴 ⊔ 1o ) ) |
20 |
|
dju1dif |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝑓 ‘ 𝐴 ) ∈ ( 𝐴 ⊔ 1o ) ) → ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ 𝐴 ) |
21 |
5 19 20
|
syl2an2r |
⊢ ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) → ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ 𝐴 ) |
22 |
|
bren |
⊢ ( ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ 𝐴 ↔ ∃ 𝑔 𝑔 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) |
23 |
21 22
|
sylib |
⊢ ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) → ∃ 𝑔 𝑔 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) |
24 |
|
simpll |
⊢ ( ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) ∧ 𝑔 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) → 1o ≺ 𝐴 ) |
25 |
|
simplr |
⊢ ( ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) ∧ 𝑔 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) → 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) |
26 |
|
simpr |
⊢ ( ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) ∧ 𝑔 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) → 𝑔 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) |
27 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 = 𝐴 ↔ 𝑥 = 𝐴 ) ) |
28 |
|
id |
⊢ ( 𝑤 = 𝑥 → 𝑤 = 𝑥 ) |
29 |
27 28
|
ifbieq2d |
⊢ ( 𝑤 = 𝑥 → if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) = if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) |
30 |
29
|
cbvmptv |
⊢ ( 𝑤 ∈ 𝒫 𝐴 ↦ if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) ) = ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) |
31 |
30
|
coeq2i |
⊢ ( ( 𝑔 ∘ 𝑓 ) ∘ ( 𝑤 ∈ 𝒫 𝐴 ↦ if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) ) ) = ( ( 𝑔 ∘ 𝑓 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) |
32 |
|
eqid |
⊢ { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 ( ( ( 𝑔 ∘ 𝑓 ) ∘ ( 𝑤 ∈ 𝒫 𝐴 ↦ if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) ) ) ‘ ( ◡ 𝑠 “ { 𝑧 } ) ) = 𝑧 ) ) } = { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 ( ( ( 𝑔 ∘ 𝑓 ) ∘ ( 𝑤 ∈ 𝒫 𝐴 ↦ if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) ) ) ‘ ( ◡ 𝑠 “ { 𝑧 } ) ) = 𝑧 ) ) } |
33 |
32
|
fpwwecbv |
⊢ { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 ( ( ( 𝑔 ∘ 𝑓 ) ∘ ( 𝑤 ∈ 𝒫 𝐴 ↦ if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) ) ) ‘ ( ◡ 𝑠 “ { 𝑧 } ) ) = 𝑧 ) ) } = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( ( ( 𝑔 ∘ 𝑓 ) ∘ ( 𝑤 ∈ 𝒫 𝐴 ↦ if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) ) ) ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } |
34 |
|
eqid |
⊢ ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 ( ( ( 𝑔 ∘ 𝑓 ) ∘ ( 𝑤 ∈ 𝒫 𝐴 ↦ if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) ) ) ‘ ( ◡ 𝑠 “ { 𝑧 } ) ) = 𝑧 ) ) } = ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 ( ( ( 𝑔 ∘ 𝑓 ) ∘ ( 𝑤 ∈ 𝒫 𝐴 ↦ if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) ) ) ‘ ( ◡ 𝑠 “ { 𝑧 } ) ) = 𝑧 ) ) } |
35 |
24 25 26 31 33 34
|
canthp1lem2 |
⊢ ¬ ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) ∧ 𝑔 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) |
36 |
35
|
pm2.21i |
⊢ ( ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) ∧ 𝑔 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) → ⊥ ) |
37 |
23 36
|
exlimddv |
⊢ ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) → ⊥ ) |
38 |
37
|
ex |
⊢ ( 1o ≺ 𝐴 → ( 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) → ⊥ ) ) |
39 |
38
|
exlimdv |
⊢ ( 1o ≺ 𝐴 → ( ∃ 𝑓 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) → ⊥ ) ) |
40 |
14 39
|
syl5 |
⊢ ( 1o ≺ 𝐴 → ( ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 → ⊥ ) ) |
41 |
11 40
|
mtoi |
⊢ ( 1o ≺ 𝐴 → ¬ ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) |
42 |
|
brsdom |
⊢ ( ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 ↔ ( ( 𝐴 ⊔ 1o ) ≼ 𝒫 𝐴 ∧ ¬ ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) ) |
43 |
10 41 42
|
sylanbrc |
⊢ ( 1o ≺ 𝐴 → ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 ) |