Metamath Proof Explorer


Theorem canthp1lem2

Description: Lemma for canthp1 . (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Hypotheses canthp1lem2.1 φ 1 𝑜 A
canthp1lem2.2 φ F : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜
canthp1lem2.3 φ G : A ⊔︀ 1 𝑜 F A 1-1 onto A
canthp1lem2.4 H = G F x 𝒫 A if x = A x
canthp1lem2.5 W = x r | x A r x × x r We x y x H r -1 y = y
canthp1lem2.6 B = dom W
Assertion canthp1lem2 ¬ φ

Proof

Step Hyp Ref Expression
1 canthp1lem2.1 φ 1 𝑜 A
2 canthp1lem2.2 φ F : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜
3 canthp1lem2.3 φ G : A ⊔︀ 1 𝑜 F A 1-1 onto A
4 canthp1lem2.4 H = G F x 𝒫 A if x = A x
5 canthp1lem2.5 W = x r | x A r x × x r We x y x H r -1 y = y
6 canthp1lem2.6 B = dom W
7 relsdom Rel
8 7 brrelex2i 1 𝑜 A A V
9 1 8 syl φ A V
10 9 pwexd φ 𝒫 A V
11 f1oeng 𝒫 A V F : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 𝒫 A A ⊔︀ 1 𝑜
12 10 2 11 syl2anc φ 𝒫 A A ⊔︀ 1 𝑜
13 12 ensymd φ A ⊔︀ 1 𝑜 𝒫 A
14 canth2g A V A 𝒫 A
15 9 14 syl φ A 𝒫 A
16 sdomen2 𝒫 A A ⊔︀ 1 𝑜 A 𝒫 A A A ⊔︀ 1 𝑜
17 12 16 syl φ A 𝒫 A A A ⊔︀ 1 𝑜
18 15 17 mpbid φ A A ⊔︀ 1 𝑜
19 sdomnen A A ⊔︀ 1 𝑜 ¬ A A ⊔︀ 1 𝑜
20 18 19 syl φ ¬ A A ⊔︀ 1 𝑜
21 omelon ω On
22 onenon ω On ω dom card
23 21 22 ax-mp ω dom card
24 dff1o3 F : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 F : 𝒫 A onto A ⊔︀ 1 𝑜 Fun F -1
25 24 simprbi F : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 Fun F -1
26 2 25 syl φ Fun F -1
27 f1ofo F : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 F : 𝒫 A onto A ⊔︀ 1 𝑜
28 2 27 syl φ F : 𝒫 A onto A ⊔︀ 1 𝑜
29 f1ofn F : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 F Fn 𝒫 A
30 fnresdm F Fn 𝒫 A F 𝒫 A = F
31 foeq1 F 𝒫 A = F F 𝒫 A : 𝒫 A onto A ⊔︀ 1 𝑜 F : 𝒫 A onto A ⊔︀ 1 𝑜
32 2 29 30 31 4syl φ F 𝒫 A : 𝒫 A onto A ⊔︀ 1 𝑜 F : 𝒫 A onto A ⊔︀ 1 𝑜
33 28 32 mpbird φ F 𝒫 A : 𝒫 A onto A ⊔︀ 1 𝑜
34 fvex F A V
35 f1osng A V F A V A F A : A 1-1 onto F A
36 9 34 35 sylancl φ A F A : A 1-1 onto F A
37 2 29 syl φ F Fn 𝒫 A
38 pwidg A V A 𝒫 A
39 9 38 syl φ A 𝒫 A
40 fnressn F Fn 𝒫 A A 𝒫 A F A = A F A
41 37 39 40 syl2anc φ F A = A F A
42 f1oeq1 F A = A F A F A : A 1-1 onto F A A F A : A 1-1 onto F A
43 41 42 syl φ F A : A 1-1 onto F A A F A : A 1-1 onto F A
44 36 43 mpbird φ F A : A 1-1 onto F A
45 f1ofo F A : A 1-1 onto F A F A : A onto F A
46 44 45 syl φ F A : A onto F A
47 resdif Fun F -1 F 𝒫 A : 𝒫 A onto A ⊔︀ 1 𝑜 F A : A onto F A F 𝒫 A A : 𝒫 A A 1-1 onto A ⊔︀ 1 𝑜 F A
48 26 33 46 47 syl3anc φ F 𝒫 A A : 𝒫 A A 1-1 onto A ⊔︀ 1 𝑜 F A
49 f1oco G : A ⊔︀ 1 𝑜 F A 1-1 onto A F 𝒫 A A : 𝒫 A A 1-1 onto A ⊔︀ 1 𝑜 F A G F 𝒫 A A : 𝒫 A A 1-1 onto A
50 3 48 49 syl2anc φ G F 𝒫 A A : 𝒫 A A 1-1 onto A
51 resco G F 𝒫 A A = G F 𝒫 A A
52 f1oeq1 G F 𝒫 A A = G F 𝒫 A A G F 𝒫 A A : 𝒫 A A 1-1 onto A G F 𝒫 A A : 𝒫 A A 1-1 onto A
53 51 52 ax-mp G F 𝒫 A A : 𝒫 A A 1-1 onto A G F 𝒫 A A : 𝒫 A A 1-1 onto A
54 50 53 sylibr φ G F 𝒫 A A : 𝒫 A A 1-1 onto A
55 f1of G F 𝒫 A A : 𝒫 A A 1-1 onto A G F 𝒫 A A : 𝒫 A A A
56 54 55 syl φ G F 𝒫 A A : 𝒫 A A A
57 0elpw 𝒫 A
58 57 a1i φ x 𝒫 A x = A 𝒫 A
59 sdom0 ¬ 1 𝑜
60 breq2 = A 1 𝑜 1 𝑜 A
61 59 60 mtbii = A ¬ 1 𝑜 A
62 61 necon2ai 1 𝑜 A A
63 1 62 syl φ A
64 63 ad2antrr φ x 𝒫 A x = A A
65 eldifsn 𝒫 A A 𝒫 A A
66 58 64 65 sylanbrc φ x 𝒫 A x = A 𝒫 A A
67 simplr φ x 𝒫 A ¬ x = A x 𝒫 A
68 simpr φ x 𝒫 A ¬ x = A ¬ x = A
69 68 neqned φ x 𝒫 A ¬ x = A x A
70 eldifsn x 𝒫 A A x 𝒫 A x A
71 67 69 70 sylanbrc φ x 𝒫 A ¬ x = A x 𝒫 A A
72 66 71 ifclda φ x 𝒫 A if x = A x 𝒫 A A
73 72 fmpttd φ x 𝒫 A if x = A x : 𝒫 A 𝒫 A A
74 56 73 fcod φ G F 𝒫 A A x 𝒫 A if x = A x : 𝒫 A A
75 73 frnd φ ran x 𝒫 A if x = A x 𝒫 A A
76 cores ran x 𝒫 A if x = A x 𝒫 A A G F 𝒫 A A x 𝒫 A if x = A x = G F x 𝒫 A if x = A x
77 75 76 syl φ G F 𝒫 A A x 𝒫 A if x = A x = G F x 𝒫 A if x = A x
78 77 4 eqtr4di φ G F 𝒫 A A x 𝒫 A if x = A x = H
79 78 feq1d φ G F 𝒫 A A x 𝒫 A if x = A x : 𝒫 A A H : 𝒫 A A
80 74 79 mpbid φ H : 𝒫 A A
81 inss1 𝒫 A dom card 𝒫 A
82 81 a1i φ 𝒫 A dom card 𝒫 A
83 eqid W B -1 H B = W B -1 H B
84 5 6 83 canth4 A V H : 𝒫 A A 𝒫 A dom card 𝒫 A B A W B -1 H B B H B = H W B -1 H B
85 9 80 82 84 syl3anc φ B A W B -1 H B B H B = H W B -1 H B
86 85 simp1d φ B A
87 85 simp2d φ W B -1 H B B
88 87 pssned φ W B -1 H B B
89 88 necomd φ B W B -1 H B
90 85 simp3d φ H B = H W B -1 H B
91 4 fveq1i H B = G F x 𝒫 A if x = A x B
92 4 fveq1i H W B -1 H B = G F x 𝒫 A if x = A x W B -1 H B
93 90 91 92 3eqtr3g φ G F x 𝒫 A if x = A x B = G F x 𝒫 A if x = A x W B -1 H B
94 9 86 sselpwd φ B 𝒫 A
95 73 94 fvco3d φ G F x 𝒫 A if x = A x B = G F x 𝒫 A if x = A x B
96 87 pssssd φ W B -1 H B B
97 96 86 sstrd φ W B -1 H B A
98 9 97 sselpwd φ W B -1 H B 𝒫 A
99 73 98 fvco3d φ G F x 𝒫 A if x = A x W B -1 H B = G F x 𝒫 A if x = A x W B -1 H B
100 93 95 99 3eqtr3d φ G F x 𝒫 A if x = A x B = G F x 𝒫 A if x = A x W B -1 H B
101 100 adantr φ B A G F x 𝒫 A if x = A x B = G F x 𝒫 A if x = A x W B -1 H B
102 eqid x 𝒫 A if x = A x = x 𝒫 A if x = A x
103 eqeq1 x = B x = A B = A
104 id x = B x = B
105 103 104 ifbieq2d x = B if x = A x = if B = A B
106 ifcl 𝒫 A B 𝒫 A if B = A B 𝒫 A
107 57 94 106 sylancr φ if B = A B 𝒫 A
108 102 105 94 107 fvmptd3 φ x 𝒫 A if x = A x B = if B = A B
109 pssne B A B A
110 109 neneqd B A ¬ B = A
111 110 iffalsed B A if B = A B = B
112 108 111 sylan9eq φ B A x 𝒫 A if x = A x B = B
113 112 fveq2d φ B A G F x 𝒫 A if x = A x B = G F B
114 eqeq1 x = W B -1 H B x = A W B -1 H B = A
115 id x = W B -1 H B x = W B -1 H B
116 114 115 ifbieq2d x = W B -1 H B if x = A x = if W B -1 H B = A W B -1 H B
117 ifcl 𝒫 A W B -1 H B 𝒫 A if W B -1 H B = A W B -1 H B 𝒫 A
118 57 98 117 sylancr φ if W B -1 H B = A W B -1 H B 𝒫 A
119 102 116 98 118 fvmptd3 φ x 𝒫 A if x = A x W B -1 H B = if W B -1 H B = A W B -1 H B
120 119 adantr φ B A x 𝒫 A if x = A x W B -1 H B = if W B -1 H B = A W B -1 H B
121 sspsstr W B -1 H B B B A W B -1 H B A
122 96 121 sylan φ B A W B -1 H B A
123 122 pssned φ B A W B -1 H B A
124 123 neneqd φ B A ¬ W B -1 H B = A
125 124 iffalsed φ B A if W B -1 H B = A W B -1 H B = W B -1 H B
126 120 125 eqtrd φ B A x 𝒫 A if x = A x W B -1 H B = W B -1 H B
127 126 fveq2d φ B A G F x 𝒫 A if x = A x W B -1 H B = G F W B -1 H B
128 101 113 127 3eqtr3d φ B A G F B = G F W B -1 H B
129 94 109 anim12i φ B A B 𝒫 A B A
130 eldifsn B 𝒫 A A B 𝒫 A B A
131 129 130 sylibr φ B A B 𝒫 A A
132 131 fvresd φ B A G F 𝒫 A A B = G F B
133 98 adantr φ B A W B -1 H B 𝒫 A
134 eldifsn W B -1 H B 𝒫 A A W B -1 H B 𝒫 A W B -1 H B A
135 133 123 134 sylanbrc φ B A W B -1 H B 𝒫 A A
136 135 fvresd φ B A G F 𝒫 A A W B -1 H B = G F W B -1 H B
137 128 132 136 3eqtr4d φ B A G F 𝒫 A A B = G F 𝒫 A A W B -1 H B
138 f1of1 G F 𝒫 A A : 𝒫 A A 1-1 onto A G F 𝒫 A A : 𝒫 A A 1-1 A
139 54 138 syl φ G F 𝒫 A A : 𝒫 A A 1-1 A
140 139 adantr φ B A G F 𝒫 A A : 𝒫 A A 1-1 A
141 f1fveq G F 𝒫 A A : 𝒫 A A 1-1 A B 𝒫 A A W B -1 H B 𝒫 A A G F 𝒫 A A B = G F 𝒫 A A W B -1 H B B = W B -1 H B
142 140 131 135 141 syl12anc φ B A G F 𝒫 A A B = G F 𝒫 A A W B -1 H B B = W B -1 H B
143 137 142 mpbid φ B A B = W B -1 H B
144 143 ex φ B A B = W B -1 H B
145 144 necon3ad φ B W B -1 H B ¬ B A
146 89 145 mpd φ ¬ B A
147 npss ¬ B A B A B = A
148 146 147 sylib φ B A B = A
149 86 148 mpd φ B = A
150 eqid B = B
151 eqid W B = W B
152 150 151 pm3.2i B = B W B = W B
153 elinel1 x 𝒫 A dom card x 𝒫 A
154 ffvelrn H : 𝒫 A A x 𝒫 A H x A
155 80 153 154 syl2an φ x 𝒫 A dom card H x A
156 5 9 155 6 fpwwe φ B W W B H B B B = B W B = W B
157 152 156 mpbiri φ B W W B H B B
158 157 simpld φ B W W B
159 5 9 fpwwelem φ B W W B B A W B B × B W B We B y B H W B -1 y = y
160 158 159 mpbid φ B A W B B × B W B We B y B H W B -1 y = y
161 160 simprld φ W B We B
162 fvex W B V
163 weeq1 r = W B r We B W B We B
164 162 163 spcev W B We B r r We B
165 161 164 syl φ r r We B
166 ween B dom card r r We B
167 165 166 sylibr φ B dom card
168 149 167 eqeltrrd φ A dom card
169 domtri2 ω dom card A dom card ω A ¬ A ω
170 23 168 169 sylancr φ ω A ¬ A ω
171 infdju1 ω A A ⊔︀ 1 𝑜 A
172 170 171 syl6bir φ ¬ A ω A ⊔︀ 1 𝑜 A
173 ensym A ⊔︀ 1 𝑜 A A A ⊔︀ 1 𝑜
174 172 173 syl6 φ ¬ A ω A A ⊔︀ 1 𝑜
175 20 174 mt3d φ A ω
176 2onn 2 𝑜 ω
177 nnsdom 2 𝑜 ω 2 𝑜 ω
178 176 177 ax-mp 2 𝑜 ω
179 djufi A ω 2 𝑜 ω A ⊔︀ 2 𝑜 ω
180 175 178 179 sylancl φ A ⊔︀ 2 𝑜 ω
181 isfinite A ⊔︀ 2 𝑜 Fin A ⊔︀ 2 𝑜 ω
182 180 181 sylibr φ A ⊔︀ 2 𝑜 Fin
183 sssucid 1 𝑜 suc 1 𝑜
184 df-2o 2 𝑜 = suc 1 𝑜
185 183 184 sseqtrri 1 𝑜 2 𝑜
186 xpss2 1 𝑜 2 𝑜 1 𝑜 × 1 𝑜 1 𝑜 × 2 𝑜
187 185 186 ax-mp 1 𝑜 × 1 𝑜 1 𝑜 × 2 𝑜
188 unss2 1 𝑜 × 1 𝑜 1 𝑜 × 2 𝑜 × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 2 𝑜
189 187 188 mp1i φ × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 2 𝑜
190 ssun2 1 𝑜 × 2 𝑜 × A 1 𝑜 × 2 𝑜
191 1oex 1 𝑜 V
192 191 snid 1 𝑜 1 𝑜
193 191 sucid 1 𝑜 suc 1 𝑜
194 193 184 eleqtrri 1 𝑜 2 𝑜
195 opelxpi 1 𝑜 1 𝑜 1 𝑜 2 𝑜 1 𝑜 1 𝑜 1 𝑜 × 2 𝑜
196 192 194 195 mp2an 1 𝑜 1 𝑜 1 𝑜 × 2 𝑜
197 190 196 sselii 1 𝑜 1 𝑜 × A 1 𝑜 × 2 𝑜
198 1n0 1 𝑜
199 198 neii ¬ 1 𝑜 =
200 opelxp1 1 𝑜 1 𝑜 × A 1 𝑜
201 elsni 1 𝑜 1 𝑜 =
202 200 201 syl 1 𝑜 1 𝑜 × A 1 𝑜 =
203 199 202 mto ¬ 1 𝑜 1 𝑜 × A
204 1onn 1 𝑜 ω
205 nnord 1 𝑜 ω Ord 1 𝑜
206 ordirr Ord 1 𝑜 ¬ 1 𝑜 1 𝑜
207 204 205 206 mp2b ¬ 1 𝑜 1 𝑜
208 opelxp2 1 𝑜 1 𝑜 1 𝑜 × 1 𝑜 1 𝑜 1 𝑜
209 207 208 mto ¬ 1 𝑜 1 𝑜 1 𝑜 × 1 𝑜
210 203 209 pm3.2ni ¬ 1 𝑜 1 𝑜 × A 1 𝑜 1 𝑜 1 𝑜 × 1 𝑜
211 elun 1 𝑜 1 𝑜 × A 1 𝑜 × 1 𝑜 1 𝑜 1 𝑜 × A 1 𝑜 1 𝑜 1 𝑜 × 1 𝑜
212 210 211 mtbir ¬ 1 𝑜 1 𝑜 × A 1 𝑜 × 1 𝑜
213 ssnelpss × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 2 𝑜 1 𝑜 1 𝑜 × A 1 𝑜 × 2 𝑜 ¬ 1 𝑜 1 𝑜 × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 2 𝑜
214 197 212 213 mp2ani × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 2 𝑜 × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 2 𝑜
215 189 214 syl φ × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 2 𝑜
216 df-dju A ⊔︀ 1 𝑜 = × A 1 𝑜 × 1 𝑜
217 df-dju A ⊔︀ 2 𝑜 = × A 1 𝑜 × 2 𝑜
218 216 217 psseq12i A ⊔︀ 1 𝑜 A ⊔︀ 2 𝑜 × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 2 𝑜
219 215 218 sylibr φ A ⊔︀ 1 𝑜 A ⊔︀ 2 𝑜
220 php3 A ⊔︀ 2 𝑜 Fin A ⊔︀ 1 𝑜 A ⊔︀ 2 𝑜 A ⊔︀ 1 𝑜 A ⊔︀ 2 𝑜
221 182 219 220 syl2anc φ A ⊔︀ 1 𝑜 A ⊔︀ 2 𝑜
222 canthp1lem1 1 𝑜 A A ⊔︀ 2 𝑜 𝒫 A
223 1 222 syl φ A ⊔︀ 2 𝑜 𝒫 A
224 sdomdomtr A ⊔︀ 1 𝑜 A ⊔︀ 2 𝑜 A ⊔︀ 2 𝑜 𝒫 A A ⊔︀ 1 𝑜 𝒫 A
225 221 223 224 syl2anc φ A ⊔︀ 1 𝑜 𝒫 A
226 sdomnen A ⊔︀ 1 𝑜 𝒫 A ¬ A ⊔︀ 1 𝑜 𝒫 A
227 225 226 syl φ ¬ A ⊔︀ 1 𝑜 𝒫 A
228 13 227 pm2.65i ¬ φ