Metamath Proof Explorer


Theorem infdju1

Description: An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion infdju1 ωAA⊔︀1𝑜A

Proof

Step Hyp Ref Expression
1 difun2 ×A1𝑜×1𝑜1𝑜×1𝑜=×A1𝑜×1𝑜
2 df-dju A⊔︀1𝑜=×A1𝑜×1𝑜
3 df1o2 1𝑜=
4 3 xpeq2i 1𝑜×1𝑜=1𝑜×
5 1oex 1𝑜V
6 0ex V
7 5 6 xpsn 1𝑜×=1𝑜
8 4 7 eqtr2i 1𝑜=1𝑜×1𝑜
9 2 8 difeq12i A⊔︀1𝑜1𝑜=×A1𝑜×1𝑜1𝑜×1𝑜
10 xp01disjl ×A1𝑜×1𝑜=
11 disj3 ×A1𝑜×1𝑜=×A=×A1𝑜×1𝑜
12 10 11 mpbi ×A=×A1𝑜×1𝑜
13 1 9 12 3eqtr4i A⊔︀1𝑜1𝑜=×A
14 reldom Rel
15 14 brrelex2i ωAAV
16 1on 1𝑜On
17 djudoml AV1𝑜OnAA⊔︀1𝑜
18 15 16 17 sylancl ωAAA⊔︀1𝑜
19 domtr ωAAA⊔︀1𝑜ωA⊔︀1𝑜
20 18 19 mpdan ωAωA⊔︀1𝑜
21 infdifsn ωA⊔︀1𝑜A⊔︀1𝑜1𝑜A⊔︀1𝑜
22 20 21 syl ωAA⊔︀1𝑜1𝑜A⊔︀1𝑜
23 13 22 eqbrtrrid ωA×AA⊔︀1𝑜
24 23 ensymd ωAA⊔︀1𝑜×A
25 xpsnen2g VAV×AA
26 6 15 25 sylancr ωA×AA
27 entr A⊔︀1𝑜×A×AAA⊔︀1𝑜A
28 24 26 27 syl2anc ωAA⊔︀1𝑜A