| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brdomi |
|
| 2 |
1
|
adantr |
|
| 3 |
|
reldom |
|
| 4 |
3
|
brrelex2i |
|
| 5 |
4
|
ad2antrr |
|
| 6 |
|
simplr |
|
| 7 |
|
f1f |
|
| 8 |
7
|
adantl |
|
| 9 |
|
peano1 |
|
| 10 |
|
ffvelcdm |
|
| 11 |
8 9 10
|
sylancl |
|
| 12 |
|
difsnen |
|
| 13 |
5 6 11 12
|
syl3anc |
|
| 14 |
|
vex |
|
| 15 |
|
f1f1orn |
|
| 16 |
15
|
adantl |
|
| 17 |
|
f1oen3g |
|
| 18 |
14 16 17
|
sylancr |
|
| 19 |
18
|
ensymd |
|
| 20 |
3
|
brrelex1i |
|
| 21 |
20
|
ad2antrr |
|
| 22 |
|
limom |
|
| 23 |
22
|
limenpsi |
|
| 24 |
21 23
|
syl |
|
| 25 |
14
|
resex |
|
| 26 |
|
simpr |
|
| 27 |
|
difss |
|
| 28 |
|
f1ores |
|
| 29 |
26 27 28
|
sylancl |
|
| 30 |
|
f1oen3g |
|
| 31 |
25 29 30
|
sylancr |
|
| 32 |
|
f1orn |
|
| 33 |
32
|
simprbi |
|
| 34 |
|
imadif |
|
| 35 |
16 33 34
|
3syl |
|
| 36 |
|
f1fn |
|
| 37 |
36
|
adantl |
|
| 38 |
|
fnima |
|
| 39 |
37 38
|
syl |
|
| 40 |
|
fnsnfv |
|
| 41 |
37 9 40
|
sylancl |
|
| 42 |
41
|
eqcomd |
|
| 43 |
39 42
|
difeq12d |
|
| 44 |
35 43
|
eqtrd |
|
| 45 |
31 44
|
breqtrd |
|
| 46 |
|
entr |
|
| 47 |
24 45 46
|
syl2anc |
|
| 48 |
|
entr |
|
| 49 |
19 47 48
|
syl2anc |
|
| 50 |
|
difexg |
|
| 51 |
|
enrefg |
|
| 52 |
5 50 51
|
3syl |
|
| 53 |
|
disjdif |
|
| 54 |
53
|
a1i |
|
| 55 |
|
difss |
|
| 56 |
|
ssrin |
|
| 57 |
55 56
|
ax-mp |
|
| 58 |
|
sseq0 |
|
| 59 |
57 53 58
|
mp2an |
|
| 60 |
59
|
a1i |
|
| 61 |
|
unen |
|
| 62 |
49 52 54 60 61
|
syl22anc |
|
| 63 |
8
|
frnd |
|
| 64 |
|
undif |
|
| 65 |
63 64
|
sylib |
|
| 66 |
|
uncom |
|
| 67 |
|
eldifn |
|
| 68 |
|
fnfvelrn |
|
| 69 |
37 9 68
|
sylancl |
|
| 70 |
67 69
|
nsyl3 |
|
| 71 |
|
disjsn |
|
| 72 |
70 71
|
sylibr |
|
| 73 |
|
undif4 |
|
| 74 |
72 73
|
syl |
|
| 75 |
|
uncom |
|
| 76 |
75 65
|
eqtrid |
|
| 77 |
76
|
difeq1d |
|
| 78 |
74 77
|
eqtrd |
|
| 79 |
66 78
|
eqtrid |
|
| 80 |
62 65 79
|
3brtr3d |
|
| 81 |
80
|
ensymd |
|
| 82 |
|
entr |
|
| 83 |
13 81 82
|
syl2anc |
|
| 84 |
2 83
|
exlimddv |
|
| 85 |
|
difsn |
|
| 86 |
85
|
adantl |
|
| 87 |
|
enrefg |
|
| 88 |
4 87
|
syl |
|
| 89 |
88
|
adantr |
|
| 90 |
86 89
|
eqbrtrd |
|
| 91 |
84 90
|
pm2.61dan |
|