| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difexg |
|
| 2 |
|
enrefg |
|
| 3 |
1 2
|
syl |
|
| 4 |
3
|
3ad2ant1 |
|
| 5 |
|
sneq |
|
| 6 |
5
|
difeq2d |
|
| 7 |
6
|
breq2d |
|
| 8 |
4 7
|
syl5ibcom |
|
| 9 |
8
|
imp |
|
| 10 |
|
simpl1 |
|
| 11 |
|
difexg |
|
| 12 |
|
enrefg |
|
| 13 |
10 1 11 12
|
4syl |
|
| 14 |
|
dif32 |
|
| 15 |
13 14
|
breqtrdi |
|
| 16 |
|
simpl3 |
|
| 17 |
|
simpl2 |
|
| 18 |
|
en2sn |
|
| 19 |
16 17 18
|
syl2anc |
|
| 20 |
|
disjdifr |
|
| 21 |
20
|
a1i |
|
| 22 |
|
disjdifr |
|
| 23 |
22
|
a1i |
|
| 24 |
|
unen |
|
| 25 |
15 19 21 23 24
|
syl22anc |
|
| 26 |
|
simpr |
|
| 27 |
26
|
necomd |
|
| 28 |
|
eldifsn |
|
| 29 |
16 27 28
|
sylanbrc |
|
| 30 |
|
difsnid |
|
| 31 |
29 30
|
syl |
|
| 32 |
|
eldifsn |
|
| 33 |
17 26 32
|
sylanbrc |
|
| 34 |
|
difsnid |
|
| 35 |
33 34
|
syl |
|
| 36 |
25 31 35
|
3brtr3d |
|
| 37 |
9 36
|
pm2.61dane |
|