Description: All decrements of a set are equinumerous. (Contributed by Stefan O'Rear, 19-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | difsnen | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexg | |
|
2 | enrefg | |
|
3 | 1 2 | syl | |
4 | 3 | 3ad2ant1 | |
5 | sneq | |
|
6 | 5 | difeq2d | |
7 | 6 | breq2d | |
8 | 4 7 | syl5ibcom | |
9 | 8 | imp | |
10 | simpl1 | |
|
11 | difexg | |
|
12 | enrefg | |
|
13 | 10 1 11 12 | 4syl | |
14 | dif32 | |
|
15 | 13 14 | breqtrdi | |
16 | simpl3 | |
|
17 | simpl2 | |
|
18 | en2sn | |
|
19 | 16 17 18 | syl2anc | |
20 | disjdifr | |
|
21 | 20 | a1i | |
22 | disjdifr | |
|
23 | 22 | a1i | |
24 | unen | |
|
25 | 15 19 21 23 24 | syl22anc | |
26 | simpr | |
|
27 | 26 | necomd | |
28 | eldifsn | |
|
29 | 16 27 28 | sylanbrc | |
30 | difsnid | |
|
31 | 29 30 | syl | |
32 | eldifsn | |
|
33 | 17 26 32 | sylanbrc | |
34 | difsnid | |
|
35 | 33 34 | syl | |
36 | 25 31 35 | 3brtr3d | |
37 | 9 36 | pm2.61dane | |