| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difexg |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∖ { 𝐴 } ) ∈ V ) |
| 2 |
|
enrefg |
⊢ ( ( 𝑋 ∖ { 𝐴 } ) ∈ V → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐴 } ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐴 } ) ) |
| 4 |
3
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐴 } ) ) |
| 5 |
|
sneq |
⊢ ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } ) |
| 6 |
5
|
difeq2d |
⊢ ( 𝐴 = 𝐵 → ( 𝑋 ∖ { 𝐴 } ) = ( 𝑋 ∖ { 𝐵 } ) ) |
| 7 |
6
|
breq2d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐴 } ) ↔ ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐵 } ) ) ) |
| 8 |
4 7
|
syl5ibcom |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 = 𝐵 → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐵 } ) ) ) |
| 9 |
8
|
imp |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 = 𝐵 ) → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐵 } ) ) |
| 10 |
|
simpl1 |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → 𝑋 ∈ 𝑉 ) |
| 11 |
|
difexg |
⊢ ( ( 𝑋 ∖ { 𝐴 } ) ∈ V → ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∈ V ) |
| 12 |
|
enrefg |
⊢ ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∈ V → ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ≈ ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ) |
| 13 |
10 1 11 12
|
4syl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ≈ ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ) |
| 14 |
|
dif32 |
⊢ ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) = ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) |
| 15 |
13 14
|
breqtrdi |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ≈ ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ) |
| 16 |
|
simpl3 |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑋 ) |
| 17 |
|
simpl2 |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑋 ) |
| 18 |
|
en2sn |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → { 𝐵 } ≈ { 𝐴 } ) |
| 19 |
16 17 18
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → { 𝐵 } ≈ { 𝐴 } ) |
| 20 |
|
disjdifr |
⊢ ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∩ { 𝐵 } ) = ∅ |
| 21 |
20
|
a1i |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∩ { 𝐵 } ) = ∅ ) |
| 22 |
|
disjdifr |
⊢ ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∩ { 𝐴 } ) = ∅ |
| 23 |
22
|
a1i |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∩ { 𝐴 } ) = ∅ ) |
| 24 |
|
unen |
⊢ ( ( ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ≈ ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∧ { 𝐵 } ≈ { 𝐴 } ) ∧ ( ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∩ { 𝐵 } ) = ∅ ∧ ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∩ { 𝐴 } ) = ∅ ) ) → ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∪ { 𝐵 } ) ≈ ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∪ { 𝐴 } ) ) |
| 25 |
15 19 21 23 24
|
syl22anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∪ { 𝐵 } ) ≈ ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∪ { 𝐴 } ) ) |
| 26 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
| 27 |
26
|
necomd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ≠ 𝐴 ) |
| 28 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( 𝑋 ∖ { 𝐴 } ) ↔ ( 𝐵 ∈ 𝑋 ∧ 𝐵 ≠ 𝐴 ) ) |
| 29 |
16 27 28
|
sylanbrc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ ( 𝑋 ∖ { 𝐴 } ) ) |
| 30 |
|
difsnid |
⊢ ( 𝐵 ∈ ( 𝑋 ∖ { 𝐴 } ) → ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∪ { 𝐵 } ) = ( 𝑋 ∖ { 𝐴 } ) ) |
| 31 |
29 30
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∪ { 𝐵 } ) = ( 𝑋 ∖ { 𝐴 } ) ) |
| 32 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( 𝑋 ∖ { 𝐵 } ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ) |
| 33 |
17 26 32
|
sylanbrc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ ( 𝑋 ∖ { 𝐵 } ) ) |
| 34 |
|
difsnid |
⊢ ( 𝐴 ∈ ( 𝑋 ∖ { 𝐵 } ) → ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∪ { 𝐴 } ) = ( 𝑋 ∖ { 𝐵 } ) ) |
| 35 |
33 34
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∪ { 𝐴 } ) = ( 𝑋 ∖ { 𝐵 } ) ) |
| 36 |
25 31 35
|
3brtr3d |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐵 } ) ) |
| 37 |
9 36
|
pm2.61dane |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐵 } ) ) |