Metamath Proof Explorer


Theorem domdifsn

Description: Dominance over a set with one element removed. (Contributed by Stefan O'Rear, 19-Feb-2015) (Revised by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion domdifsn ABABC

Proof

Step Hyp Ref Expression
1 sdomdom ABAB
2 relsdom Rel
3 2 brrelex2i ABBV
4 brdomg BVABff:A1-1B
5 3 4 syl ABABff:A1-1B
6 1 5 mpbid ABff:A1-1B
7 6 adantr ABCBff:A1-1B
8 f1f f:A1-1Bf:AB
9 8 frnd f:A1-1BranfB
10 9 adantl ABCBf:A1-1BranfB
11 sdomnen AB¬AB
12 11 ad2antrr ABCBf:A1-1B¬AB
13 vex fV
14 dff1o5 f:A1-1 ontoBf:A1-1Branf=B
15 14 biimpri f:A1-1Branf=Bf:A1-1 ontoB
16 f1oen3g fVf:A1-1 ontoBAB
17 13 15 16 sylancr f:A1-1Branf=BAB
18 17 ex f:A1-1Branf=BAB
19 18 necon3bd f:A1-1B¬ABranfB
20 19 adantl ABCBf:A1-1B¬ABranfB
21 12 20 mpd ABCBf:A1-1BranfB
22 pssdifn0 ranfBranfBBranf
23 10 21 22 syl2anc ABCBf:A1-1BBranf
24 n0 BranfxxBranf
25 23 24 sylib ABCBf:A1-1BxxBranf
26 2 brrelex1i ABAV
27 26 ad2antrr ABCBf:A1-1BxBranfAV
28 3 ad2antrr ABCBf:A1-1BxBranfBV
29 28 difexd ABCBf:A1-1BxBranfBxV
30 eldifn xBranf¬xranf
31 disjsn ranfx=¬xranf
32 30 31 sylibr xBranfranfx=
33 32 adantl f:A1-1BxBranfranfx=
34 9 adantr f:A1-1BxBranfranfB
35 reldisj ranfBranfx=ranfBx
36 34 35 syl f:A1-1BxBranfranfx=ranfBx
37 33 36 mpbid f:A1-1BxBranfranfBx
38 f1ssr f:A1-1BranfBxf:A1-1Bx
39 37 38 syldan f:A1-1BxBranff:A1-1Bx
40 39 adantl ABCBf:A1-1BxBranff:A1-1Bx
41 f1dom2g AVBxVf:A1-1BxABx
42 27 29 40 41 syl3anc ABCBf:A1-1BxBranfABx
43 eldifi xBranfxB
44 43 ad2antll ABCBf:A1-1BxBranfxB
45 simplr ABCBf:A1-1BxBranfCB
46 difsnen BVxBCBBxBC
47 28 44 45 46 syl3anc ABCBf:A1-1BxBranfBxBC
48 domentr ABxBxBCABC
49 42 47 48 syl2anc ABCBf:A1-1BxBranfABC
50 49 expr ABCBf:A1-1BxBranfABC
51 50 exlimdv ABCBf:A1-1BxxBranfABC
52 25 51 mpd ABCBf:A1-1BABC
53 7 52 exlimddv ABCBABC
54 1 adantr AB¬CBAB
55 difsn ¬CBBC=B
56 55 breq2d ¬CBABCAB
57 56 adantl AB¬CBABCAB
58 54 57 mpbird AB¬CBABC
59 53 58 pm2.61dan ABABC