Metamath Proof Explorer


Theorem domdifsn

Description: Dominance over a set with one element removed. (Contributed by Stefan O'Rear, 19-Feb-2015) (Revised by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion domdifsn A B A B C

Proof

Step Hyp Ref Expression
1 sdomdom A B A B
2 relsdom Rel
3 2 brrelex2i A B B V
4 brdomg B V A B f f : A 1-1 B
5 3 4 syl A B A B f f : A 1-1 B
6 1 5 mpbid A B f f : A 1-1 B
7 6 adantr A B C B f f : A 1-1 B
8 f1f f : A 1-1 B f : A B
9 8 frnd f : A 1-1 B ran f B
10 9 adantl A B C B f : A 1-1 B ran f B
11 sdomnen A B ¬ A B
12 11 ad2antrr A B C B f : A 1-1 B ¬ A B
13 vex f V
14 dff1o5 f : A 1-1 onto B f : A 1-1 B ran f = B
15 14 biimpri f : A 1-1 B ran f = B f : A 1-1 onto B
16 f1oen3g f V f : A 1-1 onto B A B
17 13 15 16 sylancr f : A 1-1 B ran f = B A B
18 17 ex f : A 1-1 B ran f = B A B
19 18 necon3bd f : A 1-1 B ¬ A B ran f B
20 19 adantl A B C B f : A 1-1 B ¬ A B ran f B
21 12 20 mpd A B C B f : A 1-1 B ran f B
22 pssdifn0 ran f B ran f B B ran f
23 10 21 22 syl2anc A B C B f : A 1-1 B B ran f
24 n0 B ran f x x B ran f
25 23 24 sylib A B C B f : A 1-1 B x x B ran f
26 2 brrelex1i A B A V
27 26 ad2antrr A B C B f : A 1-1 B x B ran f A V
28 3 ad2antrr A B C B f : A 1-1 B x B ran f B V
29 difexg B V B x V
30 28 29 syl A B C B f : A 1-1 B x B ran f B x V
31 eldifn x B ran f ¬ x ran f
32 disjsn ran f x = ¬ x ran f
33 31 32 sylibr x B ran f ran f x =
34 33 adantl f : A 1-1 B x B ran f ran f x =
35 9 adantr f : A 1-1 B x B ran f ran f B
36 reldisj ran f B ran f x = ran f B x
37 35 36 syl f : A 1-1 B x B ran f ran f x = ran f B x
38 34 37 mpbid f : A 1-1 B x B ran f ran f B x
39 f1ssr f : A 1-1 B ran f B x f : A 1-1 B x
40 38 39 syldan f : A 1-1 B x B ran f f : A 1-1 B x
41 40 adantl A B C B f : A 1-1 B x B ran f f : A 1-1 B x
42 f1dom2g A V B x V f : A 1-1 B x A B x
43 27 30 41 42 syl3anc A B C B f : A 1-1 B x B ran f A B x
44 eldifi x B ran f x B
45 44 ad2antll A B C B f : A 1-1 B x B ran f x B
46 simplr A B C B f : A 1-1 B x B ran f C B
47 difsnen B V x B C B B x B C
48 28 45 46 47 syl3anc A B C B f : A 1-1 B x B ran f B x B C
49 domentr A B x B x B C A B C
50 43 48 49 syl2anc A B C B f : A 1-1 B x B ran f A B C
51 50 expr A B C B f : A 1-1 B x B ran f A B C
52 51 exlimdv A B C B f : A 1-1 B x x B ran f A B C
53 25 52 mpd A B C B f : A 1-1 B A B C
54 7 53 exlimddv A B C B A B C
55 1 adantr A B ¬ C B A B
56 difsn ¬ C B B C = B
57 56 breq2d ¬ C B A B C A B
58 57 adantl A B ¬ C B A B C A B
59 55 58 mpbird A B ¬ C B A B C
60 54 59 pm2.61dan A B A B C