| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdomdom |
|
| 2 |
|
relsdom |
|
| 3 |
2
|
brrelex2i |
|
| 4 |
|
brdomg |
|
| 5 |
3 4
|
syl |
|
| 6 |
1 5
|
mpbid |
|
| 7 |
6
|
adantr |
|
| 8 |
|
f1f |
|
| 9 |
8
|
frnd |
|
| 10 |
9
|
adantl |
|
| 11 |
|
sdomnen |
|
| 12 |
11
|
ad2antrr |
|
| 13 |
|
vex |
|
| 14 |
|
dff1o5 |
|
| 15 |
14
|
biimpri |
|
| 16 |
|
f1oen3g |
|
| 17 |
13 15 16
|
sylancr |
|
| 18 |
17
|
ex |
|
| 19 |
18
|
necon3bd |
|
| 20 |
19
|
adantl |
|
| 21 |
12 20
|
mpd |
|
| 22 |
|
pssdifn0 |
|
| 23 |
10 21 22
|
syl2anc |
|
| 24 |
|
n0 |
|
| 25 |
23 24
|
sylib |
|
| 26 |
2
|
brrelex1i |
|
| 27 |
26
|
ad2antrr |
|
| 28 |
3
|
ad2antrr |
|
| 29 |
28
|
difexd |
|
| 30 |
|
eldifn |
|
| 31 |
|
disjsn |
|
| 32 |
30 31
|
sylibr |
|
| 33 |
32
|
adantl |
|
| 34 |
9
|
adantr |
|
| 35 |
|
reldisj |
|
| 36 |
34 35
|
syl |
|
| 37 |
33 36
|
mpbid |
|
| 38 |
|
f1ssr |
|
| 39 |
37 38
|
syldan |
|
| 40 |
39
|
adantl |
|
| 41 |
|
f1dom2g |
|
| 42 |
27 29 40 41
|
syl3anc |
|
| 43 |
|
eldifi |
|
| 44 |
43
|
ad2antll |
|
| 45 |
|
simplr |
|
| 46 |
|
difsnen |
|
| 47 |
28 44 45 46
|
syl3anc |
|
| 48 |
|
domentr |
|
| 49 |
42 47 48
|
syl2anc |
|
| 50 |
49
|
expr |
|
| 51 |
50
|
exlimdv |
|
| 52 |
25 51
|
mpd |
|
| 53 |
7 52
|
exlimddv |
|
| 54 |
1
|
adantr |
|
| 55 |
|
difsn |
|
| 56 |
55
|
breq2d |
|
| 57 |
56
|
adantl |
|
| 58 |
54 57
|
mpbird |
|
| 59 |
53 58
|
pm2.61dan |
|