Description: Dominance over a set with one element removed. (Contributed by Stefan O'Rear, 19-Feb-2015) (Revised by Mario Carneiro, 24-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | domdifsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom | |
|
2 | relsdom | |
|
3 | 2 | brrelex2i | |
4 | brdomg | |
|
5 | 3 4 | syl | |
6 | 1 5 | mpbid | |
7 | 6 | adantr | |
8 | f1f | |
|
9 | 8 | frnd | |
10 | 9 | adantl | |
11 | sdomnen | |
|
12 | 11 | ad2antrr | |
13 | vex | |
|
14 | dff1o5 | |
|
15 | 14 | biimpri | |
16 | f1oen3g | |
|
17 | 13 15 16 | sylancr | |
18 | 17 | ex | |
19 | 18 | necon3bd | |
20 | 19 | adantl | |
21 | 12 20 | mpd | |
22 | pssdifn0 | |
|
23 | 10 21 22 | syl2anc | |
24 | n0 | |
|
25 | 23 24 | sylib | |
26 | 2 | brrelex1i | |
27 | 26 | ad2antrr | |
28 | 3 | ad2antrr | |
29 | 28 | difexd | |
30 | eldifn | |
|
31 | disjsn | |
|
32 | 30 31 | sylibr | |
33 | 32 | adantl | |
34 | 9 | adantr | |
35 | reldisj | |
|
36 | 34 35 | syl | |
37 | 33 36 | mpbid | |
38 | f1ssr | |
|
39 | 37 38 | syldan | |
40 | 39 | adantl | |
41 | f1dom2g | |
|
42 | 27 29 40 41 | syl3anc | |
43 | eldifi | |
|
44 | 43 | ad2antll | |
45 | simplr | |
|
46 | difsnen | |
|
47 | 28 44 45 46 | syl3anc | |
48 | domentr | |
|
49 | 42 47 48 | syl2anc | |
50 | 49 | expr | |
51 | 50 | exlimdv | |
52 | 25 51 | mpd | |
53 | 7 52 | exlimddv | |
54 | 1 | adantr | |
55 | difsn | |
|
56 | 55 | breq2d | |
57 | 56 | adantl | |
58 | 54 57 | mpbird | |
59 | 53 58 | pm2.61dan | |