Metamath Proof Explorer


Theorem pwdju1

Description: The sum of a powerset with itself is equipotent to the successor powerset. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion pwdju1 AV𝒫A⊔︀𝒫A𝒫A⊔︀1𝑜

Proof

Step Hyp Ref Expression
1 1on 1𝑜On
2 pwdjuen AV1𝑜On𝒫A⊔︀1𝑜𝒫A×𝒫1𝑜
3 1 2 mpan2 AV𝒫A⊔︀1𝑜𝒫A×𝒫1𝑜
4 pwexg AV𝒫AV
5 1oex 1𝑜V
6 5 pwex 𝒫1𝑜V
7 xpcomeng 𝒫AV𝒫1𝑜V𝒫A×𝒫1𝑜𝒫1𝑜×𝒫A
8 4 6 7 sylancl AV𝒫A×𝒫1𝑜𝒫1𝑜×𝒫A
9 entr 𝒫A⊔︀1𝑜𝒫A×𝒫1𝑜𝒫A×𝒫1𝑜𝒫1𝑜×𝒫A𝒫A⊔︀1𝑜𝒫1𝑜×𝒫A
10 3 8 9 syl2anc AV𝒫A⊔︀1𝑜𝒫1𝑜×𝒫A
11 pwpw0 𝒫=
12 df1o2 1𝑜=
13 12 pweqi 𝒫1𝑜=𝒫
14 df2o2 2𝑜=
15 11 13 14 3eqtr4i 𝒫1𝑜=2𝑜
16 15 xpeq1i 𝒫1𝑜×𝒫A=2𝑜×𝒫A
17 xp2dju 2𝑜×𝒫A=𝒫A⊔︀𝒫A
18 16 17 eqtri 𝒫1𝑜×𝒫A=𝒫A⊔︀𝒫A
19 10 18 breqtrdi AV𝒫A⊔︀1𝑜𝒫A⊔︀𝒫A
20 19 ensymd AV𝒫A⊔︀𝒫A𝒫A⊔︀1𝑜