| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1on |
|- 1o e. On |
| 2 |
|
pwdjuen |
|- ( ( A e. V /\ 1o e. On ) -> ~P ( A |_| 1o ) ~~ ( ~P A X. ~P 1o ) ) |
| 3 |
1 2
|
mpan2 |
|- ( A e. V -> ~P ( A |_| 1o ) ~~ ( ~P A X. ~P 1o ) ) |
| 4 |
|
pwexg |
|- ( A e. V -> ~P A e. _V ) |
| 5 |
|
1oex |
|- 1o e. _V |
| 6 |
5
|
pwex |
|- ~P 1o e. _V |
| 7 |
|
xpcomeng |
|- ( ( ~P A e. _V /\ ~P 1o e. _V ) -> ( ~P A X. ~P 1o ) ~~ ( ~P 1o X. ~P A ) ) |
| 8 |
4 6 7
|
sylancl |
|- ( A e. V -> ( ~P A X. ~P 1o ) ~~ ( ~P 1o X. ~P A ) ) |
| 9 |
|
entr |
|- ( ( ~P ( A |_| 1o ) ~~ ( ~P A X. ~P 1o ) /\ ( ~P A X. ~P 1o ) ~~ ( ~P 1o X. ~P A ) ) -> ~P ( A |_| 1o ) ~~ ( ~P 1o X. ~P A ) ) |
| 10 |
3 8 9
|
syl2anc |
|- ( A e. V -> ~P ( A |_| 1o ) ~~ ( ~P 1o X. ~P A ) ) |
| 11 |
|
pwpw0 |
|- ~P { (/) } = { (/) , { (/) } } |
| 12 |
|
df1o2 |
|- 1o = { (/) } |
| 13 |
12
|
pweqi |
|- ~P 1o = ~P { (/) } |
| 14 |
|
df2o2 |
|- 2o = { (/) , { (/) } } |
| 15 |
11 13 14
|
3eqtr4i |
|- ~P 1o = 2o |
| 16 |
15
|
xpeq1i |
|- ( ~P 1o X. ~P A ) = ( 2o X. ~P A ) |
| 17 |
|
xp2dju |
|- ( 2o X. ~P A ) = ( ~P A |_| ~P A ) |
| 18 |
16 17
|
eqtri |
|- ( ~P 1o X. ~P A ) = ( ~P A |_| ~P A ) |
| 19 |
10 18
|
breqtrdi |
|- ( A e. V -> ~P ( A |_| 1o ) ~~ ( ~P A |_| ~P A ) ) |
| 20 |
19
|
ensymd |
|- ( A e. V -> ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) |