Metamath Proof Explorer


Theorem pwdjuen

Description: Sum of exponents law for cardinal arithmetic. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion pwdjuen AVBW𝒫A⊔︀B𝒫A×𝒫B

Proof

Step Hyp Ref Expression
1 djuex AVBWA⊔︀BV
2 pw2eng A⊔︀BV𝒫A⊔︀B2𝑜A⊔︀B
3 1 2 syl AVBW𝒫A⊔︀B2𝑜A⊔︀B
4 2on 2𝑜On
5 mapdjuen 2𝑜OnAVBW2𝑜A⊔︀B2𝑜A×2𝑜B
6 4 5 mp3an1 AVBW2𝑜A⊔︀B2𝑜A×2𝑜B
7 pw2eng AV𝒫A2𝑜A
8 pw2eng BW𝒫B2𝑜B
9 xpen 𝒫A2𝑜A𝒫B2𝑜B𝒫A×𝒫B2𝑜A×2𝑜B
10 7 8 9 syl2an AVBW𝒫A×𝒫B2𝑜A×2𝑜B
11 enen2 𝒫A×𝒫B2𝑜A×2𝑜B2𝑜A⊔︀B𝒫A×𝒫B2𝑜A⊔︀B2𝑜A×2𝑜B
12 10 11 syl AVBW2𝑜A⊔︀B𝒫A×𝒫B2𝑜A⊔︀B2𝑜A×2𝑜B
13 6 12 mpbird AVBW2𝑜A⊔︀B𝒫A×𝒫B
14 entr 𝒫A⊔︀B2𝑜A⊔︀B2𝑜A⊔︀B𝒫A×𝒫B𝒫A⊔︀B𝒫A×𝒫B
15 3 13 14 syl2anc AVBW𝒫A⊔︀B𝒫A×𝒫B