| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djuex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ⊔ 𝐵 ) ∈ V ) |
| 2 |
|
pw2eng |
⊢ ( ( 𝐴 ⊔ 𝐵 ) ∈ V → 𝒫 ( 𝐴 ⊔ 𝐵 ) ≈ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 ( 𝐴 ⊔ 𝐵 ) ≈ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ) |
| 4 |
|
2on |
⊢ 2o ∈ On |
| 5 |
|
mapdjuen |
⊢ ( ( 2o ∈ On ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) |
| 6 |
4 5
|
mp3an1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) |
| 7 |
|
pw2eng |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ) |
| 8 |
|
pw2eng |
⊢ ( 𝐵 ∈ 𝑊 → 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ) |
| 9 |
|
xpen |
⊢ ( ( 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ∧ 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ) → ( 𝒫 𝐴 × 𝒫 𝐵 ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) |
| 10 |
7 8 9
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝒫 𝐴 × 𝒫 𝐵 ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) |
| 11 |
|
enen2 |
⊢ ( ( 𝒫 𝐴 × 𝒫 𝐵 ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) → ( ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ↔ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ↔ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) ) |
| 13 |
6 12
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ) |
| 14 |
|
entr |
⊢ ( ( 𝒫 ( 𝐴 ⊔ 𝐵 ) ≈ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ∧ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ) → 𝒫 ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ) |
| 15 |
3 13 14
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ) |