Metamath Proof Explorer


Theorem pwdjuen

Description: Sum of exponents law for cardinal arithmetic. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion pwdjuen ( ( 𝐴𝑉𝐵𝑊 ) → 𝒫 ( 𝐴𝐵 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) )

Proof

Step Hyp Ref Expression
1 djuex ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ∈ V )
2 pw2eng ( ( 𝐴𝐵 ) ∈ V → 𝒫 ( 𝐴𝐵 ) ≈ ( 2om ( 𝐴𝐵 ) ) )
3 1 2 syl ( ( 𝐴𝑉𝐵𝑊 ) → 𝒫 ( 𝐴𝐵 ) ≈ ( 2om ( 𝐴𝐵 ) ) )
4 2on 2o ∈ On
5 mapdjuen ( ( 2o ∈ On ∧ 𝐴𝑉𝐵𝑊 ) → ( 2om ( 𝐴𝐵 ) ) ≈ ( ( 2om 𝐴 ) × ( 2om 𝐵 ) ) )
6 4 5 mp3an1 ( ( 𝐴𝑉𝐵𝑊 ) → ( 2om ( 𝐴𝐵 ) ) ≈ ( ( 2om 𝐴 ) × ( 2om 𝐵 ) ) )
7 pw2eng ( 𝐴𝑉 → 𝒫 𝐴 ≈ ( 2om 𝐴 ) )
8 pw2eng ( 𝐵𝑊 → 𝒫 𝐵 ≈ ( 2om 𝐵 ) )
9 xpen ( ( 𝒫 𝐴 ≈ ( 2om 𝐴 ) ∧ 𝒫 𝐵 ≈ ( 2om 𝐵 ) ) → ( 𝒫 𝐴 × 𝒫 𝐵 ) ≈ ( ( 2om 𝐴 ) × ( 2om 𝐵 ) ) )
10 7 8 9 syl2an ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝒫 𝐴 × 𝒫 𝐵 ) ≈ ( ( 2om 𝐴 ) × ( 2om 𝐵 ) ) )
11 enen2 ( ( 𝒫 𝐴 × 𝒫 𝐵 ) ≈ ( ( 2om 𝐴 ) × ( 2om 𝐵 ) ) → ( ( 2om ( 𝐴𝐵 ) ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ↔ ( 2om ( 𝐴𝐵 ) ) ≈ ( ( 2om 𝐴 ) × ( 2om 𝐵 ) ) ) )
12 10 11 syl ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 2om ( 𝐴𝐵 ) ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ↔ ( 2om ( 𝐴𝐵 ) ) ≈ ( ( 2om 𝐴 ) × ( 2om 𝐵 ) ) ) )
13 6 12 mpbird ( ( 𝐴𝑉𝐵𝑊 ) → ( 2om ( 𝐴𝐵 ) ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) )
14 entr ( ( 𝒫 ( 𝐴𝐵 ) ≈ ( 2om ( 𝐴𝐵 ) ) ∧ ( 2om ( 𝐴𝐵 ) ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ) → 𝒫 ( 𝐴𝐵 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) )
15 3 13 14 syl2anc ( ( 𝐴𝑉𝐵𝑊 ) → 𝒫 ( 𝐴𝐵 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) )