| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-dju | ⊢ ( 𝐵  ⊔  𝐶 )  =  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐶 ) ) | 
						
							| 2 | 1 | oveq2i | ⊢ ( 𝐴  ↑m  ( 𝐵  ⊔  𝐶 ) )  =  ( 𝐴  ↑m  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐶 ) ) ) | 
						
							| 3 |  | snex | ⊢ { ∅ }  ∈  V | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  𝐵  ∈  𝑊 ) | 
						
							| 5 |  | xpexg | ⊢ ( ( { ∅ }  ∈  V  ∧  𝐵  ∈  𝑊 )  →  ( { ∅ }  ×  𝐵 )  ∈  V ) | 
						
							| 6 | 3 4 5 | sylancr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( { ∅ }  ×  𝐵 )  ∈  V ) | 
						
							| 7 |  | snex | ⊢ { 1o }  ∈  V | 
						
							| 8 |  | simp3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  𝐶  ∈  𝑋 ) | 
						
							| 9 |  | xpexg | ⊢ ( ( { 1o }  ∈  V  ∧  𝐶  ∈  𝑋 )  →  ( { 1o }  ×  𝐶 )  ∈  V ) | 
						
							| 10 | 7 8 9 | sylancr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( { 1o }  ×  𝐶 )  ∈  V ) | 
						
							| 11 |  | simp1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  𝐴  ∈  𝑉 ) | 
						
							| 12 |  | xp01disjl | ⊢ ( ( { ∅ }  ×  𝐵 )  ∩  ( { 1o }  ×  𝐶 ) )  =  ∅ | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( ( { ∅ }  ×  𝐵 )  ∩  ( { 1o }  ×  𝐶 ) )  =  ∅ ) | 
						
							| 14 |  | mapunen | ⊢ ( ( ( ( { ∅ }  ×  𝐵 )  ∈  V  ∧  ( { 1o }  ×  𝐶 )  ∈  V  ∧  𝐴  ∈  𝑉 )  ∧  ( ( { ∅ }  ×  𝐵 )  ∩  ( { 1o }  ×  𝐶 ) )  =  ∅ )  →  ( 𝐴  ↑m  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐶 ) ) )  ≈  ( ( 𝐴  ↑m  ( { ∅ }  ×  𝐵 ) )  ×  ( 𝐴  ↑m  ( { 1o }  ×  𝐶 ) ) ) ) | 
						
							| 15 | 6 10 11 13 14 | syl31anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴  ↑m  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐶 ) ) )  ≈  ( ( 𝐴  ↑m  ( { ∅ }  ×  𝐵 ) )  ×  ( 𝐴  ↑m  ( { 1o }  ×  𝐶 ) ) ) ) | 
						
							| 16 | 2 15 | eqbrtrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴  ↑m  ( 𝐵  ⊔  𝐶 ) )  ≈  ( ( 𝐴  ↑m  ( { ∅ }  ×  𝐵 ) )  ×  ( 𝐴  ↑m  ( { 1o }  ×  𝐶 ) ) ) ) | 
						
							| 17 |  | enrefg | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ≈  𝐴 ) | 
						
							| 18 | 11 17 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  𝐴  ≈  𝐴 ) | 
						
							| 19 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 20 |  | xpsnen2g | ⊢ ( ( ∅  ∈  V  ∧  𝐵  ∈  𝑊 )  →  ( { ∅ }  ×  𝐵 )  ≈  𝐵 ) | 
						
							| 21 | 19 4 20 | sylancr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( { ∅ }  ×  𝐵 )  ≈  𝐵 ) | 
						
							| 22 |  | mapen | ⊢ ( ( 𝐴  ≈  𝐴  ∧  ( { ∅ }  ×  𝐵 )  ≈  𝐵 )  →  ( 𝐴  ↑m  ( { ∅ }  ×  𝐵 ) )  ≈  ( 𝐴  ↑m  𝐵 ) ) | 
						
							| 23 | 18 21 22 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴  ↑m  ( { ∅ }  ×  𝐵 ) )  ≈  ( 𝐴  ↑m  𝐵 ) ) | 
						
							| 24 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 25 |  | xpsnen2g | ⊢ ( ( 1o  ∈  On  ∧  𝐶  ∈  𝑋 )  →  ( { 1o }  ×  𝐶 )  ≈  𝐶 ) | 
						
							| 26 | 24 8 25 | sylancr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( { 1o }  ×  𝐶 )  ≈  𝐶 ) | 
						
							| 27 |  | mapen | ⊢ ( ( 𝐴  ≈  𝐴  ∧  ( { 1o }  ×  𝐶 )  ≈  𝐶 )  →  ( 𝐴  ↑m  ( { 1o }  ×  𝐶 ) )  ≈  ( 𝐴  ↑m  𝐶 ) ) | 
						
							| 28 | 18 26 27 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴  ↑m  ( { 1o }  ×  𝐶 ) )  ≈  ( 𝐴  ↑m  𝐶 ) ) | 
						
							| 29 |  | xpen | ⊢ ( ( ( 𝐴  ↑m  ( { ∅ }  ×  𝐵 ) )  ≈  ( 𝐴  ↑m  𝐵 )  ∧  ( 𝐴  ↑m  ( { 1o }  ×  𝐶 ) )  ≈  ( 𝐴  ↑m  𝐶 ) )  →  ( ( 𝐴  ↑m  ( { ∅ }  ×  𝐵 ) )  ×  ( 𝐴  ↑m  ( { 1o }  ×  𝐶 ) ) )  ≈  ( ( 𝐴  ↑m  𝐵 )  ×  ( 𝐴  ↑m  𝐶 ) ) ) | 
						
							| 30 | 23 28 29 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( ( 𝐴  ↑m  ( { ∅ }  ×  𝐵 ) )  ×  ( 𝐴  ↑m  ( { 1o }  ×  𝐶 ) ) )  ≈  ( ( 𝐴  ↑m  𝐵 )  ×  ( 𝐴  ↑m  𝐶 ) ) ) | 
						
							| 31 |  | entr | ⊢ ( ( ( 𝐴  ↑m  ( 𝐵  ⊔  𝐶 ) )  ≈  ( ( 𝐴  ↑m  ( { ∅ }  ×  𝐵 ) )  ×  ( 𝐴  ↑m  ( { 1o }  ×  𝐶 ) ) )  ∧  ( ( 𝐴  ↑m  ( { ∅ }  ×  𝐵 ) )  ×  ( 𝐴  ↑m  ( { 1o }  ×  𝐶 ) ) )  ≈  ( ( 𝐴  ↑m  𝐵 )  ×  ( 𝐴  ↑m  𝐶 ) ) )  →  ( 𝐴  ↑m  ( 𝐵  ⊔  𝐶 ) )  ≈  ( ( 𝐴  ↑m  𝐵 )  ×  ( 𝐴  ↑m  𝐶 ) ) ) | 
						
							| 32 | 16 30 31 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴  ↑m  ( 𝐵  ⊔  𝐶 ) )  ≈  ( ( 𝐴  ↑m  𝐵 )  ×  ( 𝐴  ↑m  𝐶 ) ) ) |