Metamath Proof Explorer


Theorem canth4

Description: An "effective" form of Cantor's theorem canth . For any function F from the powerset of A to A , there are two definable sets B and C which witness non-injectivity of F . Corollary 1.3 of KanamoriPincus p. 416. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Hypotheses canth4.1 W = x r | x A r x × x r We x y x F r -1 y = y
canth4.2 B = dom W
canth4.3 C = W B -1 F B
Assertion canth4 A V F : D A 𝒫 A dom card D B A C B F B = F C

Proof

Step Hyp Ref Expression
1 canth4.1 W = x r | x A r x × x r We x y x F r -1 y = y
2 canth4.2 B = dom W
3 canth4.3 C = W B -1 F B
4 eqid B = B
5 eqid W B = W B
6 4 5 pm3.2i B = B W B = W B
7 simp1 A V F : D A 𝒫 A dom card D A V
8 simpl2 A V F : D A 𝒫 A dom card D x 𝒫 A dom card F : D A
9 simp3 A V F : D A 𝒫 A dom card D 𝒫 A dom card D
10 9 sselda A V F : D A 𝒫 A dom card D x 𝒫 A dom card x D
11 8 10 ffvelrnd A V F : D A 𝒫 A dom card D x 𝒫 A dom card F x A
12 1 7 11 2 fpwwe A V F : D A 𝒫 A dom card D B W W B F B B B = B W B = W B
13 6 12 mpbiri A V F : D A 𝒫 A dom card D B W W B F B B
14 13 simpld A V F : D A 𝒫 A dom card D B W W B
15 1 7 fpwwelem A V F : D A 𝒫 A dom card D B W W B B A W B B × B W B We B y B F W B -1 y = y
16 14 15 mpbid A V F : D A 𝒫 A dom card D B A W B B × B W B We B y B F W B -1 y = y
17 16 simpld A V F : D A 𝒫 A dom card D B A W B B × B
18 17 simpld A V F : D A 𝒫 A dom card D B A
19 cnvimass W B -1 F B dom W B
20 3 19 eqsstri C dom W B
21 17 simprd A V F : D A 𝒫 A dom card D W B B × B
22 dmss W B B × B dom W B dom B × B
23 21 22 syl A V F : D A 𝒫 A dom card D dom W B dom B × B
24 dmxpid dom B × B = B
25 23 24 sseqtrdi A V F : D A 𝒫 A dom card D dom W B B
26 20 25 sstrid A V F : D A 𝒫 A dom card D C B
27 13 simprd A V F : D A 𝒫 A dom card D F B B
28 16 simprd A V F : D A 𝒫 A dom card D W B We B y B F W B -1 y = y
29 28 simpld A V F : D A 𝒫 A dom card D W B We B
30 weso W B We B W B Or B
31 29 30 syl A V F : D A 𝒫 A dom card D W B Or B
32 sonr W B Or B F B B ¬ F B W B F B
33 31 27 32 syl2anc A V F : D A 𝒫 A dom card D ¬ F B W B F B
34 3 eleq2i F B C F B W B -1 F B
35 fvex F B V
36 35 eliniseg F B V F B W B -1 F B F B W B F B
37 35 36 ax-mp F B W B -1 F B F B W B F B
38 34 37 bitri F B C F B W B F B
39 33 38 sylnibr A V F : D A 𝒫 A dom card D ¬ F B C
40 26 27 39 ssnelpssd A V F : D A 𝒫 A dom card D C B
41 sneq y = F B y = F B
42 41 imaeq2d y = F B W B -1 y = W B -1 F B
43 42 3 eqtr4di y = F B W B -1 y = C
44 43 fveq2d y = F B F W B -1 y = F C
45 id y = F B y = F B
46 44 45 eqeq12d y = F B F W B -1 y = y F C = F B
47 28 simprd A V F : D A 𝒫 A dom card D y B F W B -1 y = y
48 46 47 27 rspcdva A V F : D A 𝒫 A dom card D F C = F B
49 48 eqcomd A V F : D A 𝒫 A dom card D F B = F C
50 18 40 49 3jca A V F : D A 𝒫 A dom card D B A C B F B = F C