Metamath Proof Explorer


Theorem canth4

Description: An "effective" form of Cantor's theorem canth . For any function F from the powerset of A to A , there are two definable sets B and C which witness non-injectivity of F . Corollary 1.3 of KanamoriPincus p. 416. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Hypotheses canth4.1 W=xr|xArx×xrWexyxFr-1y=y
canth4.2 B=domW
canth4.3 C=WB-1FB
Assertion canth4 AVF:DA𝒫AdomcardDBACBFB=FC

Proof

Step Hyp Ref Expression
1 canth4.1 W=xr|xArx×xrWexyxFr-1y=y
2 canth4.2 B=domW
3 canth4.3 C=WB-1FB
4 eqid B=B
5 eqid WB=WB
6 4 5 pm3.2i B=BWB=WB
7 simp1 AVF:DA𝒫AdomcardDAV
8 simpl2 AVF:DA𝒫AdomcardDx𝒫AdomcardF:DA
9 simp3 AVF:DA𝒫AdomcardD𝒫AdomcardD
10 9 sselda AVF:DA𝒫AdomcardDx𝒫AdomcardxD
11 8 10 ffvelcdmd AVF:DA𝒫AdomcardDx𝒫AdomcardFxA
12 1 7 11 2 fpwwe AVF:DA𝒫AdomcardDBWWBFBBB=BWB=WB
13 6 12 mpbiri AVF:DA𝒫AdomcardDBWWBFBB
14 13 simpld AVF:DA𝒫AdomcardDBWWB
15 1 7 fpwwelem AVF:DA𝒫AdomcardDBWWBBAWBB×BWBWeByBFWB-1y=y
16 14 15 mpbid AVF:DA𝒫AdomcardDBAWBB×BWBWeByBFWB-1y=y
17 16 simpld AVF:DA𝒫AdomcardDBAWBB×B
18 17 simpld AVF:DA𝒫AdomcardDBA
19 cnvimass WB-1FBdomWB
20 3 19 eqsstri CdomWB
21 17 simprd AVF:DA𝒫AdomcardDWBB×B
22 dmss WBB×BdomWBdomB×B
23 21 22 syl AVF:DA𝒫AdomcardDdomWBdomB×B
24 dmxpid domB×B=B
25 23 24 sseqtrdi AVF:DA𝒫AdomcardDdomWBB
26 20 25 sstrid AVF:DA𝒫AdomcardDCB
27 13 simprd AVF:DA𝒫AdomcardDFBB
28 16 simprd AVF:DA𝒫AdomcardDWBWeByBFWB-1y=y
29 28 simpld AVF:DA𝒫AdomcardDWBWeB
30 weso WBWeBWBOrB
31 29 30 syl AVF:DA𝒫AdomcardDWBOrB
32 sonr WBOrBFBB¬FBWBFB
33 31 27 32 syl2anc AVF:DA𝒫AdomcardD¬FBWBFB
34 3 eleq2i FBCFBWB-1FB
35 fvex FBV
36 35 eliniseg FBVFBWB-1FBFBWBFB
37 35 36 ax-mp FBWB-1FBFBWBFB
38 34 37 bitri FBCFBWBFB
39 33 38 sylnibr AVF:DA𝒫AdomcardD¬FBC
40 26 27 39 ssnelpssd AVF:DA𝒫AdomcardDCB
41 sneq y=FBy=FB
42 41 imaeq2d y=FBWB-1y=WB-1FB
43 42 3 eqtr4di y=FBWB-1y=C
44 43 fveq2d y=FBFWB-1y=FC
45 id y=FBy=FB
46 44 45 eqeq12d y=FBFWB-1y=yFC=FB
47 28 simprd AVF:DA𝒫AdomcardDyBFWB-1y=y
48 46 47 27 rspcdva AVF:DA𝒫AdomcardDFC=FB
49 48 eqcomd AVF:DA𝒫AdomcardDFB=FC
50 18 40 49 3jca AVF:DA𝒫AdomcardDBACBFB=FC