Description: An "effective" form of Cantor's theorem canth . For any function F from the powerset of A to A , there are two definable sets B and C which witness non-injectivity of F . Corollary 1.3 of KanamoriPincus p. 416. (Contributed by Mario Carneiro, 18-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | canth4.1 | |
|
canth4.2 | |
||
canth4.3 | |
||
Assertion | canth4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | canth4.1 | |
|
2 | canth4.2 | |
|
3 | canth4.3 | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 4 5 | pm3.2i | |
7 | simp1 | |
|
8 | simpl2 | |
|
9 | simp3 | |
|
10 | 9 | sselda | |
11 | 8 10 | ffvelcdmd | |
12 | 1 7 11 2 | fpwwe | |
13 | 6 12 | mpbiri | |
14 | 13 | simpld | |
15 | 1 7 | fpwwelem | |
16 | 14 15 | mpbid | |
17 | 16 | simpld | |
18 | 17 | simpld | |
19 | cnvimass | |
|
20 | 3 19 | eqsstri | |
21 | 17 | simprd | |
22 | dmss | |
|
23 | 21 22 | syl | |
24 | dmxpid | |
|
25 | 23 24 | sseqtrdi | |
26 | 20 25 | sstrid | |
27 | 13 | simprd | |
28 | 16 | simprd | |
29 | 28 | simpld | |
30 | weso | |
|
31 | 29 30 | syl | |
32 | sonr | |
|
33 | 31 27 32 | syl2anc | |
34 | 3 | eleq2i | |
35 | fvex | |
|
36 | 35 | eliniseg | |
37 | 35 36 | ax-mp | |
38 | 34 37 | bitri | |
39 | 33 38 | sylnibr | |
40 | 26 27 39 | ssnelpssd | |
41 | sneq | |
|
42 | 41 | imaeq2d | |
43 | 42 3 | eqtr4di | |
44 | 43 | fveq2d | |
45 | id | |
|
46 | 44 45 | eqeq12d | |
47 | 28 | simprd | |
48 | 46 47 27 | rspcdva | |
49 | 48 | eqcomd | |
50 | 18 40 49 | 3jca | |