Metamath Proof Explorer


Theorem fpwwecbv

Description: Lemma for fpwwe . (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Hypothesis fpwwe.1 W=xr|xArx×xrWexyxFr-1y=y
Assertion fpwwecbv W=as|aAsa×asWeazaFs-1z=z

Proof

Step Hyp Ref Expression
1 fpwwe.1 W=xr|xArx×xrWexyxFr-1y=y
2 simpl x=ar=sx=a
3 2 sseq1d x=ar=sxAaA
4 simpr x=ar=sr=s
5 2 sqxpeqd x=ar=sx×x=a×a
6 4 5 sseq12d x=ar=srx×xsa×a
7 3 6 anbi12d x=ar=sxArx×xaAsa×a
8 weeq2 x=arWexrWea
9 weeq1 r=srWeasWea
10 8 9 sylan9bb x=ar=srWexsWea
11 sneq y=zy=z
12 11 imaeq2d y=zr-1y=r-1z
13 12 fveq2d y=zFr-1y=Fr-1z
14 id y=zy=z
15 13 14 eqeq12d y=zFr-1y=yFr-1z=z
16 15 cbvralvw yxFr-1y=yzxFr-1z=z
17 4 cnveqd x=ar=sr-1=s-1
18 17 imaeq1d x=ar=sr-1z=s-1z
19 18 fveqeq2d x=ar=sFr-1z=zFs-1z=z
20 2 19 raleqbidv x=ar=szxFr-1z=zzaFs-1z=z
21 16 20 bitrid x=ar=syxFr-1y=yzaFs-1z=z
22 10 21 anbi12d x=ar=srWexyxFr-1y=ysWeazaFs-1z=z
23 7 22 anbi12d x=ar=sxArx×xrWexyxFr-1y=yaAsa×asWeazaFs-1z=z
24 23 cbvopabv xr|xArx×xrWexyxFr-1y=y=as|aAsa×asWeazaFs-1z=z
25 1 24 eqtri W=as|aAsa×asWeazaFs-1z=z