| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gidval.1 |
⊢ 𝑋 = ran 𝐺 |
| 2 |
|
elex |
⊢ ( 𝐺 ∈ 𝑉 → 𝐺 ∈ V ) |
| 3 |
|
rneq |
⊢ ( 𝑔 = 𝐺 → ran 𝑔 = ran 𝐺 ) |
| 4 |
3 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ran 𝑔 = 𝑋 ) |
| 5 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( 𝑢 𝑔 𝑥 ) = ( 𝑢 𝐺 𝑥 ) ) |
| 6 |
5
|
eqeq1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ↔ ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ) |
| 7 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 𝑢 ) = ( 𝑥 𝐺 𝑢 ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 𝑔 𝑢 ) = 𝑥 ↔ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) |
| 9 |
6 8
|
anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑔 𝑢 ) = 𝑥 ) ↔ ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
| 10 |
4 9
|
raleqbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ ran 𝑔 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑔 𝑢 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
| 11 |
4 10
|
riotaeqbidv |
⊢ ( 𝑔 = 𝐺 → ( ℩ 𝑢 ∈ ran 𝑔 ∀ 𝑥 ∈ ran 𝑔 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑔 𝑢 ) = 𝑥 ) ) = ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
| 12 |
|
df-gid |
⊢ GId = ( 𝑔 ∈ V ↦ ( ℩ 𝑢 ∈ ran 𝑔 ∀ 𝑥 ∈ ran 𝑔 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑔 𝑢 ) = 𝑥 ) ) ) |
| 13 |
|
riotaex |
⊢ ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ∈ V |
| 14 |
11 12 13
|
fvmpt |
⊢ ( 𝐺 ∈ V → ( GId ‘ 𝐺 ) = ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
| 15 |
2 14
|
syl |
⊢ ( 𝐺 ∈ 𝑉 → ( GId ‘ 𝐺 ) = ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |