Metamath Proof Explorer


Theorem glbprop

Description: Properties of greatest lower bound of a poset. (Contributed by NM, 7-Sep-2018)

Ref Expression
Hypotheses glbprop.b 𝐵 = ( Base ‘ 𝐾 )
glbprop.l = ( le ‘ 𝐾 )
glbprop.u 𝑈 = ( glb ‘ 𝐾 )
glbprop.k ( 𝜑𝐾𝑉 )
glbprop.s ( 𝜑𝑆 ∈ dom 𝑈 )
Assertion glbprop ( 𝜑 → ( ∀ 𝑦𝑆 ( 𝑈𝑆 ) 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 ( 𝑈𝑆 ) ) ) )

Proof

Step Hyp Ref Expression
1 glbprop.b 𝐵 = ( Base ‘ 𝐾 )
2 glbprop.l = ( le ‘ 𝐾 )
3 glbprop.u 𝑈 = ( glb ‘ 𝐾 )
4 glbprop.k ( 𝜑𝐾𝑉 )
5 glbprop.s ( 𝜑𝑆 ∈ dom 𝑈 )
6 biid ( ( ∀ 𝑦𝑆 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ) ↔ ( ∀ 𝑦𝑆 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ) )
7 1 2 3 4 5 glbelss ( 𝜑𝑆𝐵 )
8 1 2 3 6 4 7 glbval ( 𝜑 → ( 𝑈𝑆 ) = ( 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ) ) )
9 8 eqcomd ( 𝜑 → ( 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ) ) = ( 𝑈𝑆 ) )
10 1 3 4 5 glbcl ( 𝜑 → ( 𝑈𝑆 ) ∈ 𝐵 )
11 1 2 3 6 4 5 glbeu ( 𝜑 → ∃! 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ) )
12 breq1 ( 𝑥 = ( 𝑈𝑆 ) → ( 𝑥 𝑦 ↔ ( 𝑈𝑆 ) 𝑦 ) )
13 12 ralbidv ( 𝑥 = ( 𝑈𝑆 ) → ( ∀ 𝑦𝑆 𝑥 𝑦 ↔ ∀ 𝑦𝑆 ( 𝑈𝑆 ) 𝑦 ) )
14 breq2 ( 𝑥 = ( 𝑈𝑆 ) → ( 𝑧 𝑥𝑧 ( 𝑈𝑆 ) ) )
15 14 imbi2d ( 𝑥 = ( 𝑈𝑆 ) → ( ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ↔ ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 ( 𝑈𝑆 ) ) ) )
16 15 ralbidv ( 𝑥 = ( 𝑈𝑆 ) → ( ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ↔ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 ( 𝑈𝑆 ) ) ) )
17 13 16 anbi12d ( 𝑥 = ( 𝑈𝑆 ) → ( ( ∀ 𝑦𝑆 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ) ↔ ( ∀ 𝑦𝑆 ( 𝑈𝑆 ) 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 ( 𝑈𝑆 ) ) ) ) )
18 17 riota2 ( ( ( 𝑈𝑆 ) ∈ 𝐵 ∧ ∃! 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ) ) → ( ( ∀ 𝑦𝑆 ( 𝑈𝑆 ) 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 ( 𝑈𝑆 ) ) ) ↔ ( 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ) ) = ( 𝑈𝑆 ) ) )
19 10 11 18 syl2anc ( 𝜑 → ( ( ∀ 𝑦𝑆 ( 𝑈𝑆 ) 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 ( 𝑈𝑆 ) ) ) ↔ ( 𝑥𝐵 ( ∀ 𝑦𝑆 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 𝑥 ) ) ) = ( 𝑈𝑆 ) ) )
20 9 19 mpbird ( 𝜑 → ( ∀ 𝑦𝑆 ( 𝑈𝑆 ) 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑧 𝑦𝑧 ( 𝑈𝑆 ) ) ) )