Step |
Hyp |
Ref |
Expression |
1 |
|
gneispace.a |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓 ∀ 𝑛 ∈ ( 𝑓 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝑓 ‘ 𝑝 ) ) ) ) } |
2 |
1
|
gneispace0nelrn |
⊢ ( 𝐹 ∈ 𝐴 → ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ≠ ∅ ) |
3 |
|
fveq2 |
⊢ ( 𝑝 = 𝑃 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑃 ) ) |
4 |
3
|
neeq1d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ↔ ( 𝐹 ‘ 𝑃 ) ≠ ∅ ) ) |
5 |
4
|
rspccv |
⊢ ( ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ≠ ∅ → ( 𝑃 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑃 ) ≠ ∅ ) ) |
6 |
2 5
|
syl |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝑃 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑃 ) ≠ ∅ ) ) |
7 |
6
|
imp |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑃 ) ≠ ∅ ) |