Metamath Proof Explorer


Theorem gneispace0nelrn2

Description: A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓𝑛 ∈ ( 𝑓𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ) }
Assertion gneispace0nelrn2 ( ( 𝐹𝐴𝑃 ∈ dom 𝐹 ) → ( 𝐹𝑃 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 gneispace.a 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓𝑛 ∈ ( 𝑓𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ) }
2 1 gneispace0nelrn ( 𝐹𝐴 → ∀ 𝑝 ∈ dom 𝐹 ( 𝐹𝑝 ) ≠ ∅ )
3 fveq2 ( 𝑝 = 𝑃 → ( 𝐹𝑝 ) = ( 𝐹𝑃 ) )
4 3 neeq1d ( 𝑝 = 𝑃 → ( ( 𝐹𝑝 ) ≠ ∅ ↔ ( 𝐹𝑃 ) ≠ ∅ ) )
5 4 rspccv ( ∀ 𝑝 ∈ dom 𝐹 ( 𝐹𝑝 ) ≠ ∅ → ( 𝑃 ∈ dom 𝐹 → ( 𝐹𝑃 ) ≠ ∅ ) )
6 2 5 syl ( 𝐹𝐴 → ( 𝑃 ∈ dom 𝐹 → ( 𝐹𝑃 ) ≠ ∅ ) )
7 6 imp ( ( 𝐹𝐴𝑃 ∈ dom 𝐹 ) → ( 𝐹𝑃 ) ≠ ∅ )