Step |
Hyp |
Ref |
Expression |
1 |
|
gneispace.a |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓 ∀ 𝑛 ∈ ( 𝑓 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝑓 ‘ 𝑝 ) ) ) ) } |
2 |
1
|
gneispacern |
⊢ ( 𝐹 ∈ 𝐴 → ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) |
3 |
|
neldifsnd |
⊢ ( ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) → ¬ ∅ ∈ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) |
4 |
|
ssel |
⊢ ( ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) → ( ∅ ∈ ran 𝐹 → ∅ ∈ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ) |
5 |
3 4
|
mtod |
⊢ ( ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) → ¬ ∅ ∈ ran 𝐹 ) |
6 |
2 5
|
syl |
⊢ ( 𝐹 ∈ 𝐴 → ¬ ∅ ∈ ran 𝐹 ) |