Metamath Proof Explorer


Theorem gneispace0nelrn3

Description: A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓𝑛 ∈ ( 𝑓𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ) }
Assertion gneispace0nelrn3 ( 𝐹𝐴 → ¬ ∅ ∈ ran 𝐹 )

Proof

Step Hyp Ref Expression
1 gneispace.a 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓𝑛 ∈ ( 𝑓𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ) }
2 1 gneispacern ( 𝐹𝐴 → ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) )
3 neldifsnd ( ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) → ¬ ∅ ∈ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) )
4 ssel ( ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) → ( ∅ ∈ ran 𝐹 → ∅ ∈ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) )
5 3 4 mtod ( ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) → ¬ ∅ ∈ ran 𝐹 )
6 2 5 syl ( 𝐹𝐴 → ¬ ∅ ∈ ran 𝐹 )