Metamath Proof Explorer


Theorem gneispaceel

Description: Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓𝑛 ∈ ( 𝑓𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ) }
Assertion gneispaceel ( 𝐹𝐴 → ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) 𝑝𝑛 )

Proof

Step Hyp Ref Expression
1 gneispace.a 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓𝑛 ∈ ( 𝑓𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ) }
2 1 gneispace2 ( 𝐹𝐴 → ( 𝐹𝐴 ↔ ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ) ) ) )
3 2 ibi ( 𝐹𝐴 → ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ) ) )
4 simpl ( ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ) → 𝑝𝑛 )
5 4 2ralimi ( ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ) → ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) 𝑝𝑛 )
6 3 5 simpl2im ( 𝐹𝐴 → ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) 𝑝𝑛 )