Metamath Proof Explorer


Theorem gneispaceel

Description: Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
Assertion gneispaceel F A p dom F n F p p n

Proof

Step Hyp Ref Expression
1 gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
2 1 gneispace2 F A F A F : dom F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p
3 2 ibi F A F : dom F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p
4 simpl p n s 𝒫 dom F n s s F p p n
5 4 2ralimi p dom F n F p p n s 𝒫 dom F n s s F p p dom F n F p p n
6 3 5 simpl2im F A p dom F n F p p n