Metamath Proof Explorer


Theorem gneispaceel2

Description: Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
Assertion gneispaceel2 F A P dom F N F P P N

Proof

Step Hyp Ref Expression
1 gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
2 1 gneispaceel F A p dom F n F p p n
3 fveq2 p = P F p = F P
4 eleq1 p = P p n P n
5 3 4 raleqbidv p = P n F p p n n F P P n
6 5 rspccv p dom F n F p p n P dom F n F P P n
7 2 6 syl F A P dom F n F P P n
8 eleq2 n = N P n P N
9 8 rspccv n F P P n N F P P N
10 7 9 syl6 F A P dom F N F P P N
11 10 3imp F A P dom F N F P P N