Metamath Proof Explorer


Theorem gneispaceel2

Description: Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
Assertion gneispaceel2 FAPdomFNFPPN

Proof

Step Hyp Ref Expression
1 gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
2 1 gneispaceel FApdomFnFppn
3 fveq2 p=PFp=FP
4 eleq1 p=PpnPn
5 3 4 raleqbidv p=PnFppnnFPPn
6 5 rspccv pdomFnFppnPdomFnFPPn
7 2 6 syl FAPdomFnFPPn
8 eleq2 n=NPnPN
9 8 rspccv nFPPnNFPPN
10 7 9 syl6 FAPdomFNFPPN
11 10 3imp FAPdomFNFPPN