Step |
Hyp |
Ref |
Expression |
1 |
|
gneispace.a |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓 ∀ 𝑛 ∈ ( 𝑓 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝑓 ‘ 𝑝 ) ) ) ) } |
2 |
1
|
gneispaceel |
⊢ ( 𝐹 ∈ 𝐴 → ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) 𝑝 ∈ 𝑛 ) |
3 |
|
fveq2 |
⊢ ( 𝑝 = 𝑃 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑃 ) ) |
4 |
|
eleq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∈ 𝑛 ↔ 𝑃 ∈ 𝑛 ) ) |
5 |
3 4
|
raleqbidv |
⊢ ( 𝑝 = 𝑃 → ( ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) 𝑝 ∈ 𝑛 ↔ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑃 ) 𝑃 ∈ 𝑛 ) ) |
6 |
5
|
rspccv |
⊢ ( ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) 𝑝 ∈ 𝑛 → ( 𝑃 ∈ dom 𝐹 → ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑃 ) 𝑃 ∈ 𝑛 ) ) |
7 |
2 6
|
syl |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝑃 ∈ dom 𝐹 → ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑃 ) 𝑃 ∈ 𝑛 ) ) |
8 |
|
eleq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝑃 ∈ 𝑛 ↔ 𝑃 ∈ 𝑁 ) ) |
9 |
8
|
rspccv |
⊢ ( ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑃 ) 𝑃 ∈ 𝑛 → ( 𝑁 ∈ ( 𝐹 ‘ 𝑃 ) → 𝑃 ∈ 𝑁 ) ) |
10 |
7 9
|
syl6 |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝑃 ∈ dom 𝐹 → ( 𝑁 ∈ ( 𝐹 ‘ 𝑃 ) → 𝑃 ∈ 𝑁 ) ) ) |
11 |
10
|
3imp |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹 ∧ 𝑁 ∈ ( 𝐹 ‘ 𝑃 ) ) → 𝑃 ∈ 𝑁 ) |