Metamath Proof Explorer


Theorem gneispaceel2

Description: Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓𝑛 ∈ ( 𝑓𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ) }
Assertion gneispaceel2 ( ( 𝐹𝐴𝑃 ∈ dom 𝐹𝑁 ∈ ( 𝐹𝑃 ) ) → 𝑃𝑁 )

Proof

Step Hyp Ref Expression
1 gneispace.a 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓𝑛 ∈ ( 𝑓𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ) }
2 1 gneispaceel ( 𝐹𝐴 → ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) 𝑝𝑛 )
3 fveq2 ( 𝑝 = 𝑃 → ( 𝐹𝑝 ) = ( 𝐹𝑃 ) )
4 eleq1 ( 𝑝 = 𝑃 → ( 𝑝𝑛𝑃𝑛 ) )
5 3 4 raleqbidv ( 𝑝 = 𝑃 → ( ∀ 𝑛 ∈ ( 𝐹𝑝 ) 𝑝𝑛 ↔ ∀ 𝑛 ∈ ( 𝐹𝑃 ) 𝑃𝑛 ) )
6 5 rspccv ( ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) 𝑝𝑛 → ( 𝑃 ∈ dom 𝐹 → ∀ 𝑛 ∈ ( 𝐹𝑃 ) 𝑃𝑛 ) )
7 2 6 syl ( 𝐹𝐴 → ( 𝑃 ∈ dom 𝐹 → ∀ 𝑛 ∈ ( 𝐹𝑃 ) 𝑃𝑛 ) )
8 eleq2 ( 𝑛 = 𝑁 → ( 𝑃𝑛𝑃𝑁 ) )
9 8 rspccv ( ∀ 𝑛 ∈ ( 𝐹𝑃 ) 𝑃𝑛 → ( 𝑁 ∈ ( 𝐹𝑃 ) → 𝑃𝑁 ) )
10 7 9 syl6 ( 𝐹𝐴 → ( 𝑃 ∈ dom 𝐹 → ( 𝑁 ∈ ( 𝐹𝑃 ) → 𝑃𝑁 ) ) )
11 10 3imp ( ( 𝐹𝐴𝑃 ∈ dom 𝐹𝑁 ∈ ( 𝐹𝑃 ) ) → 𝑃𝑁 )