| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gneispace.a |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓 ∀ 𝑛 ∈ ( 𝑓 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝑓 ‘ 𝑝 ) ) ) ) } |
| 2 |
|
id |
⊢ ( 𝑓 = 𝐹 → 𝑓 = 𝐹 ) |
| 3 |
|
dmeq |
⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) |
| 4 |
3
|
pweqd |
⊢ ( 𝑓 = 𝐹 → 𝒫 dom 𝑓 = 𝒫 dom 𝐹 ) |
| 5 |
4
|
difeq1d |
⊢ ( 𝑓 = 𝐹 → ( 𝒫 dom 𝑓 ∖ { ∅ } ) = ( 𝒫 dom 𝐹 ∖ { ∅ } ) ) |
| 6 |
5
|
pweqd |
⊢ ( 𝑓 = 𝐹 → 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) = 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ) |
| 7 |
6
|
difeq1d |
⊢ ( 𝑓 = 𝐹 → ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) = ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) |
| 8 |
2 3 7
|
feq123d |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ↔ 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ) |
| 9 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ) |
| 10 |
9
|
eleq2d |
⊢ ( 𝑓 = 𝐹 → ( 𝑠 ∈ ( 𝑓 ‘ 𝑝 ) ↔ 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) |
| 11 |
10
|
imbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝑓 ‘ 𝑝 ) ) ↔ ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) |
| 12 |
4 11
|
raleqbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝑓 ‘ 𝑝 ) ) ↔ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) |
| 13 |
12
|
anbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝑓 ‘ 𝑝 ) ) ) ↔ ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) |
| 14 |
9 13
|
raleqbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑛 ∈ ( 𝑓 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝑓 ‘ 𝑝 ) ) ) ↔ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) |
| 15 |
3 14
|
raleqbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑝 ∈ dom 𝑓 ∀ 𝑛 ∈ ( 𝑓 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝑓 ‘ 𝑝 ) ) ) ↔ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) |
| 16 |
8 15
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓 ∀ 𝑛 ∈ ( 𝑓 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝑓 ‘ 𝑝 ) ) ) ) ↔ ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) ) |
| 17 |
16 1
|
elab2g |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ 𝐴 ↔ ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) ) |