Metamath Proof Explorer


Theorem gneispace2

Description: The predicate that F is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓𝑛 ∈ ( 𝑓𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ) }
Assertion gneispace2 ( 𝐹𝑉 → ( 𝐹𝐴 ↔ ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 gneispace.a 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓𝑛 ∈ ( 𝑓𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ) }
2 id ( 𝑓 = 𝐹𝑓 = 𝐹 )
3 dmeq ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 )
4 3 pweqd ( 𝑓 = 𝐹 → 𝒫 dom 𝑓 = 𝒫 dom 𝐹 )
5 4 difeq1d ( 𝑓 = 𝐹 → ( 𝒫 dom 𝑓 ∖ { ∅ } ) = ( 𝒫 dom 𝐹 ∖ { ∅ } ) )
6 5 pweqd ( 𝑓 = 𝐹 → 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) = 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) )
7 6 difeq1d ( 𝑓 = 𝐹 → ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) = ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) )
8 2 3 7 feq123d ( 𝑓 = 𝐹 → ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ↔ 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) )
9 fveq1 ( 𝑓 = 𝐹 → ( 𝑓𝑝 ) = ( 𝐹𝑝 ) )
10 9 eleq2d ( 𝑓 = 𝐹 → ( 𝑠 ∈ ( 𝑓𝑝 ) ↔ 𝑠 ∈ ( 𝐹𝑝 ) ) )
11 10 imbi2d ( 𝑓 = 𝐹 → ( ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ↔ ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ) )
12 4 11 raleqbidv ( 𝑓 = 𝐹 → ( ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ↔ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ) )
13 12 anbi2d ( 𝑓 = 𝐹 → ( ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ↔ ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ) ) )
14 9 13 raleqbidv ( 𝑓 = 𝐹 → ( ∀ 𝑛 ∈ ( 𝑓𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ↔ ∀ 𝑛 ∈ ( 𝐹𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ) ) )
15 3 14 raleqbidv ( 𝑓 = 𝐹 → ( ∀ 𝑝 ∈ dom 𝑓𝑛 ∈ ( 𝑓𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ↔ ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ) ) )
16 8 15 anbi12d ( 𝑓 = 𝐹 → ( ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓𝑛 ∈ ( 𝑓𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ) ↔ ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ) ) ) )
17 16 1 elab2g ( 𝐹𝑉 → ( 𝐹𝐴 ↔ ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ) ) ) )