Metamath Proof Explorer


Theorem gneispace3

Description: The predicate that F is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓𝑛 ∈ ( 𝑓𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ) }
Assertion gneispace3 ( 𝐹𝑉 → ( 𝐹𝐴 ↔ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ∧ ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 gneispace.a 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓𝑛 ∈ ( 𝑓𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ) }
2 1 gneispace2 ( 𝐹𝑉 → ( 𝐹𝐴 ↔ ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ) ) ) )
3 df-f ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ↔ ( 𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) )
4 funfn ( Fun 𝐹𝐹 Fn dom 𝐹 )
5 4 anbi1i ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ↔ ( 𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) )
6 3 5 bitr4i ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ↔ ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) )
7 6 anbi1i ( ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ) ) ↔ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ∧ ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ) ) )
8 2 7 bitrdi ( 𝐹𝑉 → ( 𝐹𝐴 ↔ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ∧ ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ) ) ) )