Step |
Hyp |
Ref |
Expression |
1 |
|
gneispace.a |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓 ∀ 𝑛 ∈ ( 𝑓 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝑓 ‘ 𝑝 ) ) ) ) } |
2 |
1
|
gneispace2 |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ 𝐴 ↔ ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) ) |
3 |
|
df-f |
⊢ ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ↔ ( 𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ) |
4 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
5 |
4
|
anbi1i |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ↔ ( 𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ) |
6 |
3 5
|
bitr4i |
⊢ ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ↔ ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ) |
7 |
6
|
anbi1i |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ↔ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) |
8 |
2 7
|
bitrdi |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ 𝐴 ↔ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) ) |