Step |
Hyp |
Ref |
Expression |
1 |
|
gneispace.a |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓 ∀ 𝑛 ∈ ( 𝑓 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝑓 ‘ 𝑝 ) ) ) ) } |
2 |
1
|
gneispace3 |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ 𝐴 ↔ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) ) |
3 |
|
simpll |
⊢ ( ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) → Fun 𝐹 ) |
4 |
|
simplr |
⊢ ( ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) → ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) |
5 |
|
difss |
⊢ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ⊆ 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) |
6 |
|
difss |
⊢ ( 𝒫 dom 𝐹 ∖ { ∅ } ) ⊆ 𝒫 dom 𝐹 |
7 |
6
|
sspwi |
⊢ 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ⊆ 𝒫 𝒫 dom 𝐹 |
8 |
5 7
|
sstri |
⊢ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ⊆ 𝒫 𝒫 dom 𝐹 |
9 |
4 8
|
sstrdi |
⊢ ( ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) → ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ) |
10 |
|
simpr |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) → ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) |
11 |
|
simpl |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) → Fun 𝐹 ) |
12 |
|
fvelrn |
⊢ ( ( Fun 𝐹 ∧ 𝑝 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑝 ) ∈ ran 𝐹 ) |
13 |
11 12
|
sylan |
⊢ ( ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ∧ 𝑝 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑝 ) ∈ ran 𝐹 ) |
14 |
|
ssel2 |
⊢ ( ( ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ( 𝐹 ‘ 𝑝 ) ∈ ran 𝐹 ) → ( 𝐹 ‘ 𝑝 ) ∈ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) |
15 |
|
eldifsni |
⊢ ( ( 𝐹 ‘ 𝑝 ) ∈ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) → ( 𝐹 ‘ 𝑝 ) ≠ ∅ ) |
16 |
14 15
|
syl |
⊢ ( ( ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ( 𝐹 ‘ 𝑝 ) ∈ ran 𝐹 ) → ( 𝐹 ‘ 𝑝 ) ≠ ∅ ) |
17 |
10 13 16
|
syl2an2r |
⊢ ( ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ∧ 𝑝 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑝 ) ≠ ∅ ) |
18 |
17
|
ralrimiva |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) → ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ≠ ∅ ) |
19 |
|
r19.26 |
⊢ ( ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ↔ ( ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) |
20 |
19
|
biimpri |
⊢ ( ( ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) → ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) |
21 |
18 20
|
sylan |
⊢ ( ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) → ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) |
22 |
3 9 21
|
3jca |
⊢ ( ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) → ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) ) |
23 |
|
simp1 |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → Fun 𝐹 ) |
24 |
|
nfv |
⊢ Ⅎ 𝑝 Fun 𝐹 |
25 |
|
nfv |
⊢ Ⅎ 𝑝 ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 |
26 |
|
nfra1 |
⊢ Ⅎ 𝑝 ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) |
27 |
24 25 26
|
nf3an |
⊢ Ⅎ 𝑝 ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) |
28 |
|
simpr |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) → ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) |
29 |
|
simpl |
⊢ ( ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) → 𝑝 ∈ 𝑛 ) |
30 |
29
|
19.8ad |
⊢ ( ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) → ∃ 𝑝 𝑝 ∈ 𝑛 ) |
31 |
30
|
ralimi |
⊢ ( ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) → ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∃ 𝑝 𝑝 ∈ 𝑛 ) |
32 |
28 31
|
syl |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) → ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∃ 𝑝 𝑝 ∈ 𝑛 ) |
33 |
32
|
ralimi |
⊢ ( ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) → ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∃ 𝑝 𝑝 ∈ 𝑛 ) |
34 |
33
|
3ad2ant3 |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∃ 𝑝 𝑝 ∈ 𝑛 ) |
35 |
|
rsp |
⊢ ( ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∃ 𝑝 𝑝 ∈ 𝑛 → ( 𝑝 ∈ dom 𝐹 → ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∃ 𝑝 𝑝 ∈ 𝑛 ) ) |
36 |
34 35
|
syl |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ( 𝑝 ∈ dom 𝐹 → ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∃ 𝑝 𝑝 ∈ 𝑛 ) ) |
37 |
|
df-ex |
⊢ ( ∃ 𝑝 𝑝 ∈ 𝑛 ↔ ¬ ∀ 𝑝 ¬ 𝑝 ∈ 𝑛 ) |
38 |
37
|
ralbii |
⊢ ( ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∃ 𝑝 𝑝 ∈ 𝑛 ↔ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ¬ ∀ 𝑝 ¬ 𝑝 ∈ 𝑛 ) |
39 |
|
ralnex |
⊢ ( ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ¬ ∀ 𝑝 ¬ 𝑝 ∈ 𝑛 ↔ ¬ ∃ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∀ 𝑝 ¬ 𝑝 ∈ 𝑛 ) |
40 |
38 39
|
bitri |
⊢ ( ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∃ 𝑝 𝑝 ∈ 𝑛 ↔ ¬ ∃ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∀ 𝑝 ¬ 𝑝 ∈ 𝑛 ) |
41 |
|
0el |
⊢ ( ∅ ∈ ( 𝐹 ‘ 𝑝 ) ↔ ∃ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∀ 𝑝 ¬ 𝑝 ∈ 𝑛 ) |
42 |
40 41
|
xchbinxr |
⊢ ( ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∃ 𝑝 𝑝 ∈ 𝑛 ↔ ¬ ∅ ∈ ( 𝐹 ‘ 𝑝 ) ) |
43 |
42
|
biimpi |
⊢ ( ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∃ 𝑝 𝑝 ∈ 𝑛 → ¬ ∅ ∈ ( 𝐹 ‘ 𝑝 ) ) |
44 |
|
elinel1 |
⊢ ( ∅ ∈ ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) → ∅ ∈ ( 𝐹 ‘ 𝑝 ) ) |
45 |
43 44
|
nsyl |
⊢ ( ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∃ 𝑝 𝑝 ∈ 𝑛 → ¬ ∅ ∈ ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ) |
46 |
|
disjsn |
⊢ ( ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ∩ { ∅ } ) = ∅ ↔ ¬ ∅ ∈ ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ) |
47 |
45 46
|
sylibr |
⊢ ( ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∃ 𝑝 𝑝 ∈ 𝑛 → ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ∩ { ∅ } ) = ∅ ) |
48 |
|
disjdif2 |
⊢ ( ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ∩ { ∅ } ) = ∅ → ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ∖ { ∅ } ) = ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ) |
49 |
47 48
|
syl |
⊢ ( ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∃ 𝑝 𝑝 ∈ 𝑛 → ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ∖ { ∅ } ) = ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ) |
50 |
36 49
|
syl6 |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ( 𝑝 ∈ dom 𝐹 → ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ∖ { ∅ } ) = ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ) ) |
51 |
|
simp2 |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ) |
52 |
12
|
ex |
⊢ ( Fun 𝐹 → ( 𝑝 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑝 ) ∈ ran 𝐹 ) ) |
53 |
23 52
|
syl |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ( 𝑝 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑝 ) ∈ ran 𝐹 ) ) |
54 |
|
ssel2 |
⊢ ( ( ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ( 𝐹 ‘ 𝑝 ) ∈ ran 𝐹 ) → ( 𝐹 ‘ 𝑝 ) ∈ 𝒫 𝒫 dom 𝐹 ) |
55 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑝 ) ∈ V |
56 |
55
|
elpw |
⊢ ( ( 𝐹 ‘ 𝑝 ) ∈ 𝒫 𝒫 dom 𝐹 ↔ ( 𝐹 ‘ 𝑝 ) ⊆ 𝒫 dom 𝐹 ) |
57 |
|
df-ss |
⊢ ( ( 𝐹 ‘ 𝑝 ) ⊆ 𝒫 dom 𝐹 ↔ ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) = ( 𝐹 ‘ 𝑝 ) ) |
58 |
56 57
|
sylbb |
⊢ ( ( 𝐹 ‘ 𝑝 ) ∈ 𝒫 𝒫 dom 𝐹 → ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) = ( 𝐹 ‘ 𝑝 ) ) |
59 |
54 58
|
syl |
⊢ ( ( ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ( 𝐹 ‘ 𝑝 ) ∈ ran 𝐹 ) → ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) = ( 𝐹 ‘ 𝑝 ) ) |
60 |
51 53 59
|
syl6an |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ( 𝑝 ∈ dom 𝐹 → ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) = ( 𝐹 ‘ 𝑝 ) ) ) |
61 |
50 60
|
jcad |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ( 𝑝 ∈ dom 𝐹 → ( ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ∖ { ∅ } ) = ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ∧ ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) = ( 𝐹 ‘ 𝑝 ) ) ) ) |
62 |
|
eqtr |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ∖ { ∅ } ) = ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ∧ ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) = ( 𝐹 ‘ 𝑝 ) ) → ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ∖ { ∅ } ) = ( 𝐹 ‘ 𝑝 ) ) |
63 |
|
df-ss |
⊢ ( ( 𝐹 ‘ 𝑝 ) ⊆ ( 𝒫 dom 𝐹 ∖ { ∅ } ) ↔ ( ( 𝐹 ‘ 𝑝 ) ∩ ( 𝒫 dom 𝐹 ∖ { ∅ } ) ) = ( 𝐹 ‘ 𝑝 ) ) |
64 |
|
indif2 |
⊢ ( ( 𝐹 ‘ 𝑝 ) ∩ ( 𝒫 dom 𝐹 ∖ { ∅ } ) ) = ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ∖ { ∅ } ) |
65 |
64
|
eqeq1i |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ∩ ( 𝒫 dom 𝐹 ∖ { ∅ } ) ) = ( 𝐹 ‘ 𝑝 ) ↔ ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ∖ { ∅ } ) = ( 𝐹 ‘ 𝑝 ) ) |
66 |
63 65
|
bitri |
⊢ ( ( 𝐹 ‘ 𝑝 ) ⊆ ( 𝒫 dom 𝐹 ∖ { ∅ } ) ↔ ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ∖ { ∅ } ) = ( 𝐹 ‘ 𝑝 ) ) |
67 |
62 66
|
sylibr |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ∖ { ∅ } ) = ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) ∧ ( ( 𝐹 ‘ 𝑝 ) ∩ 𝒫 dom 𝐹 ) = ( 𝐹 ‘ 𝑝 ) ) → ( 𝐹 ‘ 𝑝 ) ⊆ ( 𝒫 dom 𝐹 ∖ { ∅ } ) ) |
68 |
61 67
|
syl6 |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ( 𝑝 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑝 ) ⊆ ( 𝒫 dom 𝐹 ∖ { ∅ } ) ) ) |
69 |
27 68
|
ralrimi |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ⊆ ( 𝒫 dom 𝐹 ∖ { ∅ } ) ) |
70 |
23
|
funfnd |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → 𝐹 Fn dom 𝐹 ) |
71 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑝 ) → ( 𝑥 ⊆ ( 𝒫 dom 𝐹 ∖ { ∅ } ) ↔ ( 𝐹 ‘ 𝑝 ) ⊆ ( 𝒫 dom 𝐹 ∖ { ∅ } ) ) ) |
72 |
71
|
ralrn |
⊢ ( 𝐹 Fn dom 𝐹 → ( ∀ 𝑥 ∈ ran 𝐹 𝑥 ⊆ ( 𝒫 dom 𝐹 ∖ { ∅ } ) ↔ ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ⊆ ( 𝒫 dom 𝐹 ∖ { ∅ } ) ) ) |
73 |
70 72
|
syl |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ( ∀ 𝑥 ∈ ran 𝐹 𝑥 ⊆ ( 𝒫 dom 𝐹 ∖ { ∅ } ) ↔ ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ⊆ ( 𝒫 dom 𝐹 ∖ { ∅ } ) ) ) |
74 |
69 73
|
mpbird |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ∀ 𝑥 ∈ ran 𝐹 𝑥 ⊆ ( 𝒫 dom 𝐹 ∖ { ∅ } ) ) |
75 |
|
pwssb |
⊢ ( ran 𝐹 ⊆ 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ↔ ∀ 𝑥 ∈ ran 𝐹 𝑥 ⊆ ( 𝒫 dom 𝐹 ∖ { ∅ } ) ) |
76 |
74 75
|
sylibr |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ran 𝐹 ⊆ 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ) |
77 |
|
simpl |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) → ( 𝐹 ‘ 𝑝 ) ≠ ∅ ) |
78 |
77
|
ralimi |
⊢ ( ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) → ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ≠ ∅ ) |
79 |
78
|
3ad2ant3 |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ≠ ∅ ) |
80 |
23 79
|
jca |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ( Fun 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ≠ ∅ ) ) |
81 |
|
elrnrexdm |
⊢ ( Fun 𝐹 → ( ∅ ∈ ran 𝐹 → ∃ 𝑝 ∈ dom 𝐹 ∅ = ( 𝐹 ‘ 𝑝 ) ) ) |
82 |
|
nesym |
⊢ ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ↔ ¬ ∅ = ( 𝐹 ‘ 𝑝 ) ) |
83 |
82
|
ralbii |
⊢ ( ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ≠ ∅ ↔ ∀ 𝑝 ∈ dom 𝐹 ¬ ∅ = ( 𝐹 ‘ 𝑝 ) ) |
84 |
|
ralnex |
⊢ ( ∀ 𝑝 ∈ dom 𝐹 ¬ ∅ = ( 𝐹 ‘ 𝑝 ) ↔ ¬ ∃ 𝑝 ∈ dom 𝐹 ∅ = ( 𝐹 ‘ 𝑝 ) ) |
85 |
83 84
|
sylbb |
⊢ ( ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ≠ ∅ → ¬ ∃ 𝑝 ∈ dom 𝐹 ∅ = ( 𝐹 ‘ 𝑝 ) ) |
86 |
81 85
|
nsyli |
⊢ ( Fun 𝐹 → ( ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ≠ ∅ → ¬ ∅ ∈ ran 𝐹 ) ) |
87 |
86
|
imp |
⊢ ( ( Fun 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ≠ ∅ ) → ¬ ∅ ∈ ran 𝐹 ) |
88 |
|
disjsn |
⊢ ( ( ran 𝐹 ∩ { ∅ } ) = ∅ ↔ ¬ ∅ ∈ ran 𝐹 ) |
89 |
87 88
|
sylibr |
⊢ ( ( Fun 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ≠ ∅ ) → ( ran 𝐹 ∩ { ∅ } ) = ∅ ) |
90 |
80 89
|
syl |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ( ran 𝐹 ∩ { ∅ } ) = ∅ ) |
91 |
|
reldisj |
⊢ ( ran 𝐹 ⊆ 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) → ( ( ran 𝐹 ∩ { ∅ } ) = ∅ ↔ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ) |
92 |
91
|
biimpd |
⊢ ( ran 𝐹 ⊆ 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) → ( ( ran 𝐹 ∩ { ∅ } ) = ∅ → ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ) |
93 |
76 90 92
|
sylc |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) |
94 |
23 93
|
jca |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ) |
95 |
19
|
biimpi |
⊢ ( ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) → ( ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) |
96 |
95
|
3ad2ant3 |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ( ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) |
97 |
|
simpr |
⊢ ( ( ∀ 𝑝 ∈ dom 𝐹 ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) → ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) |
98 |
96 97
|
syl |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) |
99 |
94 98
|
jca |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) → ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) |
100 |
22 99
|
impbii |
⊢ ( ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ( 𝒫 ( 𝒫 dom 𝐹 ∖ { ∅ } ) ∖ { ∅ } ) ) ∧ ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ↔ ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) ) |
101 |
2 100
|
bitrdi |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ 𝐴 ↔ ( Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀ 𝑝 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑝 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) ) ) ) ) |