Metamath Proof Explorer


Theorem gneispace3

Description: The predicate that F is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
Assertion gneispace3 F V F A Fun F ran F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p

Proof

Step Hyp Ref Expression
1 gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
2 1 gneispace2 F V F A F : dom F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p
3 df-f F : dom F 𝒫 𝒫 dom F F Fn dom F ran F 𝒫 𝒫 dom F
4 funfn Fun F F Fn dom F
5 4 anbi1i Fun F ran F 𝒫 𝒫 dom F F Fn dom F ran F 𝒫 𝒫 dom F
6 3 5 bitr4i F : dom F 𝒫 𝒫 dom F Fun F ran F 𝒫 𝒫 dom F
7 6 anbi1i F : dom F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p Fun F ran F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p
8 2 7 bitrdi F V F A Fun F ran F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p