Metamath Proof Explorer


Theorem gneispace0nelrn3

Description: A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
Assertion gneispace0nelrn3 F A ¬ ran F

Proof

Step Hyp Ref Expression
1 gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
2 1 gneispacern F A ran F 𝒫 𝒫 dom F
3 neldifsnd ran F 𝒫 𝒫 dom F ¬ 𝒫 𝒫 dom F
4 ssel ran F 𝒫 𝒫 dom F ran F 𝒫 𝒫 dom F
5 3 4 mtod ran F 𝒫 𝒫 dom F ¬ ran F
6 2 5 syl F A ¬ ran F