Metamath Proof Explorer


Theorem gneispace0nelrn3

Description: A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a
|- A = { f | ( f : dom f --> ( ~P ( ~P dom f \ { (/) } ) \ { (/) } ) /\ A. p e. dom f A. n e. ( f ` p ) ( p e. n /\ A. s e. ~P dom f ( n C_ s -> s e. ( f ` p ) ) ) ) }
Assertion gneispace0nelrn3
|- ( F e. A -> -. (/) e. ran F )

Proof

Step Hyp Ref Expression
1 gneispace.a
 |-  A = { f | ( f : dom f --> ( ~P ( ~P dom f \ { (/) } ) \ { (/) } ) /\ A. p e. dom f A. n e. ( f ` p ) ( p e. n /\ A. s e. ~P dom f ( n C_ s -> s e. ( f ` p ) ) ) ) }
2 1 gneispacern
 |-  ( F e. A -> ran F C_ ( ~P ( ~P dom F \ { (/) } ) \ { (/) } ) )
3 neldifsnd
 |-  ( ran F C_ ( ~P ( ~P dom F \ { (/) } ) \ { (/) } ) -> -. (/) e. ( ~P ( ~P dom F \ { (/) } ) \ { (/) } ) )
4 ssel
 |-  ( ran F C_ ( ~P ( ~P dom F \ { (/) } ) \ { (/) } ) -> ( (/) e. ran F -> (/) e. ( ~P ( ~P dom F \ { (/) } ) \ { (/) } ) ) )
5 3 4 mtod
 |-  ( ran F C_ ( ~P ( ~P dom F \ { (/) } ) \ { (/) } ) -> -. (/) e. ran F )
6 2 5 syl
 |-  ( F e. A -> -. (/) e. ran F )