| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gneispace.a |
|- A = { f | ( f : dom f --> ( ~P ( ~P dom f \ { (/) } ) \ { (/) } ) /\ A. p e. dom f A. n e. ( f ` p ) ( p e. n /\ A. s e. ~P dom f ( n C_ s -> s e. ( f ` p ) ) ) ) } |
| 2 |
1
|
gneispacern |
|- ( F e. A -> ran F C_ ( ~P ( ~P dom F \ { (/) } ) \ { (/) } ) ) |
| 3 |
|
neldifsnd |
|- ( ran F C_ ( ~P ( ~P dom F \ { (/) } ) \ { (/) } ) -> -. (/) e. ( ~P ( ~P dom F \ { (/) } ) \ { (/) } ) ) |
| 4 |
|
ssel |
|- ( ran F C_ ( ~P ( ~P dom F \ { (/) } ) \ { (/) } ) -> ( (/) e. ran F -> (/) e. ( ~P ( ~P dom F \ { (/) } ) \ { (/) } ) ) ) |
| 5 |
3 4
|
mtod |
|- ( ran F C_ ( ~P ( ~P dom F \ { (/) } ) \ { (/) } ) -> -. (/) e. ran F ) |
| 6 |
2 5
|
syl |
|- ( F e. A -> -. (/) e. ran F ) |