Step |
Hyp |
Ref |
Expression |
1 |
|
gneispace.a |
|- A = { f | ( f : dom f --> ( ~P ( ~P dom f \ { (/) } ) \ { (/) } ) /\ A. p e. dom f A. n e. ( f ` p ) ( p e. n /\ A. s e. ~P dom f ( n C_ s -> s e. ( f ` p ) ) ) ) } |
2 |
1
|
gneispace0nelrn |
|- ( F e. A -> A. p e. dom F ( F ` p ) =/= (/) ) |
3 |
|
fveq2 |
|- ( p = P -> ( F ` p ) = ( F ` P ) ) |
4 |
3
|
neeq1d |
|- ( p = P -> ( ( F ` p ) =/= (/) <-> ( F ` P ) =/= (/) ) ) |
5 |
4
|
rspccv |
|- ( A. p e. dom F ( F ` p ) =/= (/) -> ( P e. dom F -> ( F ` P ) =/= (/) ) ) |
6 |
2 5
|
syl |
|- ( F e. A -> ( P e. dom F -> ( F ` P ) =/= (/) ) ) |
7 |
6
|
imp |
|- ( ( F e. A /\ P e. dom F ) -> ( F ` P ) =/= (/) ) |