Step |
Hyp |
Ref |
Expression |
1 |
|
goel |
⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 𝐼 ∈𝑔 𝐽 ) = ⟨ ∅ , ⟨ 𝐼 , 𝐽 ⟩ ⟩ ) |
2 |
|
goel |
⊢ ( ( 𝑀 ∈ ω ∧ 𝑁 ∈ ω ) → ( 𝑀 ∈𝑔 𝑁 ) = ⟨ ∅ , ⟨ 𝑀 , 𝑁 ⟩ ⟩ ) |
3 |
1 2
|
eqeqan12rd |
⊢ ( ( ( 𝑀 ∈ ω ∧ 𝑁 ∈ ω ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ) → ( ( 𝐼 ∈𝑔 𝐽 ) = ( 𝑀 ∈𝑔 𝑁 ) ↔ ⟨ ∅ , ⟨ 𝐼 , 𝐽 ⟩ ⟩ = ⟨ ∅ , ⟨ 𝑀 , 𝑁 ⟩ ⟩ ) ) |
4 |
|
0ex |
⊢ ∅ ∈ V |
5 |
|
opex |
⊢ ⟨ 𝐼 , 𝐽 ⟩ ∈ V |
6 |
4 5
|
opth |
⊢ ( ⟨ ∅ , ⟨ 𝐼 , 𝐽 ⟩ ⟩ = ⟨ ∅ , ⟨ 𝑀 , 𝑁 ⟩ ⟩ ↔ ( ∅ = ∅ ∧ ⟨ 𝐼 , 𝐽 ⟩ = ⟨ 𝑀 , 𝑁 ⟩ ) ) |
7 |
|
eqid |
⊢ ∅ = ∅ |
8 |
7
|
biantrur |
⊢ ( ⟨ 𝐼 , 𝐽 ⟩ = ⟨ 𝑀 , 𝑁 ⟩ ↔ ( ∅ = ∅ ∧ ⟨ 𝐼 , 𝐽 ⟩ = ⟨ 𝑀 , 𝑁 ⟩ ) ) |
9 |
|
opthg |
⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( ⟨ 𝐼 , 𝐽 ⟩ = ⟨ 𝑀 , 𝑁 ⟩ ↔ ( 𝐼 = 𝑀 ∧ 𝐽 = 𝑁 ) ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑀 ∈ ω ∧ 𝑁 ∈ ω ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ) → ( ⟨ 𝐼 , 𝐽 ⟩ = ⟨ 𝑀 , 𝑁 ⟩ ↔ ( 𝐼 = 𝑀 ∧ 𝐽 = 𝑁 ) ) ) |
11 |
8 10
|
bitr3id |
⊢ ( ( ( 𝑀 ∈ ω ∧ 𝑁 ∈ ω ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ) → ( ( ∅ = ∅ ∧ ⟨ 𝐼 , 𝐽 ⟩ = ⟨ 𝑀 , 𝑁 ⟩ ) ↔ ( 𝐼 = 𝑀 ∧ 𝐽 = 𝑁 ) ) ) |
12 |
6 11
|
bitrid |
⊢ ( ( ( 𝑀 ∈ ω ∧ 𝑁 ∈ ω ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ) → ( ⟨ ∅ , ⟨ 𝐼 , 𝐽 ⟩ ⟩ = ⟨ ∅ , ⟨ 𝑀 , 𝑁 ⟩ ⟩ ↔ ( 𝐼 = 𝑀 ∧ 𝐽 = 𝑁 ) ) ) |
13 |
3 12
|
bitrd |
⊢ ( ( ( 𝑀 ∈ ω ∧ 𝑁 ∈ ω ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ) → ( ( 𝐼 ∈𝑔 𝐽 ) = ( 𝑀 ∈𝑔 𝑁 ) ↔ ( 𝐼 = 𝑀 ∧ 𝐽 = 𝑁 ) ) ) |