Step |
Hyp |
Ref |
Expression |
1 |
|
goel |
|- ( ( I e. _om /\ J e. _om ) -> ( I e.g J ) = <. (/) , <. I , J >. >. ) |
2 |
|
goel |
|- ( ( M e. _om /\ N e. _om ) -> ( M e.g N ) = <. (/) , <. M , N >. >. ) |
3 |
1 2
|
eqeqan12rd |
|- ( ( ( M e. _om /\ N e. _om ) /\ ( I e. _om /\ J e. _om ) ) -> ( ( I e.g J ) = ( M e.g N ) <-> <. (/) , <. I , J >. >. = <. (/) , <. M , N >. >. ) ) |
4 |
|
0ex |
|- (/) e. _V |
5 |
|
opex |
|- <. I , J >. e. _V |
6 |
4 5
|
opth |
|- ( <. (/) , <. I , J >. >. = <. (/) , <. M , N >. >. <-> ( (/) = (/) /\ <. I , J >. = <. M , N >. ) ) |
7 |
|
eqid |
|- (/) = (/) |
8 |
7
|
biantrur |
|- ( <. I , J >. = <. M , N >. <-> ( (/) = (/) /\ <. I , J >. = <. M , N >. ) ) |
9 |
|
opthg |
|- ( ( I e. _om /\ J e. _om ) -> ( <. I , J >. = <. M , N >. <-> ( I = M /\ J = N ) ) ) |
10 |
9
|
adantl |
|- ( ( ( M e. _om /\ N e. _om ) /\ ( I e. _om /\ J e. _om ) ) -> ( <. I , J >. = <. M , N >. <-> ( I = M /\ J = N ) ) ) |
11 |
8 10
|
bitr3id |
|- ( ( ( M e. _om /\ N e. _om ) /\ ( I e. _om /\ J e. _om ) ) -> ( ( (/) = (/) /\ <. I , J >. = <. M , N >. ) <-> ( I = M /\ J = N ) ) ) |
12 |
6 11
|
syl5bb |
|- ( ( ( M e. _om /\ N e. _om ) /\ ( I e. _om /\ J e. _om ) ) -> ( <. (/) , <. I , J >. >. = <. (/) , <. M , N >. >. <-> ( I = M /\ J = N ) ) ) |
13 |
3 12
|
bitrd |
|- ( ( ( M e. _om /\ N e. _om ) /\ ( I e. _om /\ J e. _om ) ) -> ( ( I e.g J ) = ( M e.g N ) <-> ( I = M /\ J = N ) ) ) |