Metamath Proof Explorer


Theorem goeleq12bg

Description: Two "Godel-set of membership" codes for two variables are equal iff the two corresponding variables are equal. (Contributed by AV, 8-Oct-2023)

Ref Expression
Assertion goeleq12bg MωNωIωJωI𝑔J=M𝑔NI=MJ=N

Proof

Step Hyp Ref Expression
1 goel IωJωI𝑔J=IJ
2 goel MωNωM𝑔N=MN
3 1 2 eqeqan12rd MωNωIωJωI𝑔J=M𝑔NIJ=MN
4 0ex V
5 opex IJV
6 4 5 opth IJ=MN=IJ=MN
7 eqid =
8 7 biantrur IJ=MN=IJ=MN
9 opthg IωJωIJ=MNI=MJ=N
10 9 adantl MωNωIωJωIJ=MNI=MJ=N
11 8 10 bitr3id MωNωIωJω=IJ=MNI=MJ=N
12 6 11 bitrid MωNωIωJωIJ=MNI=MJ=N
13 3 12 bitrd MωNωIωJωI𝑔J=M𝑔NI=MJ=N