Metamath Proof Explorer


Theorem goel

Description: A "Godel-set of membership". The variables are identified by their indices (which are natural numbers), and the membership v_i e. v_j is coded as <. (/) , <. i , j >. >. . (Contributed by AV, 15-Sep-2023)

Ref Expression
Assertion goel IωJωI𝑔J=IJ

Proof

Step Hyp Ref Expression
1 df-ov I𝑔J=𝑔IJ
2 df-goel 𝑔=xω×ωx
3 2 a1i IωJω𝑔=xω×ωx
4 opeq2 x=IJx=IJ
5 4 adantl IωJωx=IJx=IJ
6 opelxpi IωJωIJω×ω
7 opex IJV
8 7 a1i IωJωIJV
9 3 5 6 8 fvmptd IωJω𝑔IJ=IJ
10 1 9 eqtrid IωJωI𝑔J=IJ