Metamath Proof Explorer


Theorem gpgedg

Description: The edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025)

Ref Expression
Hypotheses gpgov.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
gpgov.i 𝐼 = ( 0 ..^ 𝑁 )
Assertion gpgedg ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( Edg ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } )

Proof

Step Hyp Ref Expression
1 gpgov.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
2 gpgov.i 𝐼 = ( 0 ..^ 𝑁 )
3 edgval ( Edg ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ran ( iEdg ‘ ( 𝑁 gPetersenGr 𝐾 ) )
4 1 2 gpgiedg ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( iEdg ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) )
5 4 rneqd ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ran ( iEdg ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ran ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) )
6 rnresi ran ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) = { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) }
7 5 6 eqtrdi ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ran ( iEdg ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } )
8 3 7 eqtrid ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( Edg ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } )